Серединный перпендикуляр к хорде проходит через центр окружности.
Серединный перпендикуляр к отрезку АВ – это множество точек, равноудаленных от точек А и В. Другими словами, все точки, равноудаленные от А и В, лежат на серединном перпендикуляре к АВ. С другой стороны, если точки А и В лежат на окружности с центром О, то АО = ВО. Это значит, что точка О лежит на серединном перпендикуляре к АВ.
- Это полезно
- Серединные перпендикуляры к хордами окружности
- Определение хорды
- Свойства хорды к окружности
- Свойства хорды и вписанного угла
- Свойства хорды и центрального угла
- Формулы нахождения хорды
- Решение задач
- Окружность
- Основные термины
- Касательная
- Свойства касательной
- Хорда
- Свойства хорд
- Свойства окружности
- Теорема о касательной и секущей
- Теорема о секущих
- Углы в окружности
- Свойства углов, связанных с окружностью
- Длины и площади
- Вписанные и описанные окружности
- Окружность и треугольник
- Окружность и четырехугольники
- 🔍 Видео
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Это полезно
В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Серединные перпендикуляры к хордами окружности
Учебный курс | Решаем задачи по геометрии |
Видео:Теорема о диаметре, перпендикулярном хордеСкачать Определение хорды Часть кривой, заключенной между двумя точками хорды, называется дугой. Плоская фигура, заключенная между дугой и ее хордой называется сегментом. Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности — самая длинная хорда окружности. Видео:8 класс, 36 урок, Свойства серединного перпендикуляра к отрезкуСкачать Свойства хорды к окружности
Видео:#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать Свойства хорды и вписанного углаВидео:Окружность, диаметр, хорда геометрия 7 классСкачать Свойства хорды и центрального углаВидео:Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)Скачать Формулы нахождения хорды Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла. Видео:Почему серединные перпендикуляры пересекаются в одной точке? | Vasily mathsСкачать Решение задачПримечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен.
Решение. Согласно свойству хорд AS x SB = CS x SD, тогда 2х * 3х = 5 * 12 Откуда
Решение. 3,5х + 5,5х + 3х = 360 Откуда градусные величины центральных углов равны: 90 / 2 = 45 Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ; ОкружностьОкружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, — радиусом окружности. Часть плоскости, ограниченная окружностью называется кругом. Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга. Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой. Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать Основные терминыКасательнаяПрямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Свойства касательной
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. ХордаОтрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром. Свойства хорд
Дуги, заключенные между параллельными хордами, равны. Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD. Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать Свойства окружности
Теорема о касательной и секущейЕсли из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA•MB . Теорема о секущихЕсли из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть. MA•MB = MC•MD. Видео:Перпендикуляр и наклонная в пространстве. Практическая часть. 10 класс.Скачать Углы в окружностиЦентральным углом в окружности называется плоский угол с вершиной в ее центре. Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом. Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла. Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром. Свойства углов, связанных с окружностью
Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны. Вписанный угол, опирающийся на диаметр, равен 90°. Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами. Видео:Перпендикуляр и наклонная в пространстве. 10 класс.Скачать Длины и площади
Площадь S круга радиуса R вычисляется по формуле: Длина дуги окружности L радиуса R с центральным углом ,измеренным в радианах, вычисляется по формуле: Площадь S сектора радиуса R с центральным углом в радиан вычисляется по формуле: Видео:Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CDСкачать Вписанные и описанные окружностиОкружность и треугольник
где S — площадь треугольника, а — полупериметр; центр описанной окружности — точка пересечения серединных перпендикуляров, ее радиус R вычисляется по формуле: здесь a, b, c — стороны треугольника, — угол, лежащий против стороны a , S — площадь треугольника; Окружность и четырехугольники
в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:
🔍 Видео№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать Определение центра дуги окружности, построение окружности по 3 точкамСкачать 7 класс. Геометрия. Теорема о перпендикулярности диаметра и хорды. 07.04.2020.Скачать Самый короткий тест на интеллект Задача Массачусетского профессораСкачать ОГЭ/База Все прототипы задач на окружностиСкачать №1,17 | Все теория по планиметрии за 4 часа | Решаем все прототипы №1 из ФИПИСкачать Свойства хорд окружностиСкачать |