Как найти план треугольника

Построение треугольника по трем элементам

Вы будете перенаправлены на Автор24

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Задачи на построение

В геометрии довольно распространены так называемые задачи на построение. Их суть заключается в том, чтобы построить какой-либо геометрический объект по какому-либо достаточному набору начальных условий имея под рукой только циркуль и линейку. Рассмотрим общую схему для выполнения таких задач:

Анализ задачи.

В эту часть входит установление связи между элементами, которые необходимо построить и начальными условиями задачи. После выполнения этого пункта у нас должен появиться план по решению нашей задачи.

Построение.

Здесь мы выполняем построения по плану, который был нами составлен выше.

Доказательство.

Здесь мы доказываем то, что построенная нами фигура действительно удовлетворяет начальным условиям задачи.

Исследование.

Здесь мы выясняем, при каких данных задача имеет одно решение, при каких несколько, а при каких ни одного.

Далее будем рассматривать задачи на построение треугольников по различным трем элементам. Здесь мы не будем рассматривать элементарные построения, таких как отрезок, угол и т.д. К этому моменту эти навыки уже у Вас должны иметься.

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Построение треугольника по двум сторонами и углу между ними

Постройте треугольник, если нам даны две стороны и угол, который находится между этими сторонами.

Пусть нам даны отрезки $AB$ и $AC$ и угол $α$. Нам нужно построить треугольник $ABC$ с углом $C$ равным $α$.

Составим план построения:

  1. Проведем прямую $a$ и построим на ней отрезок $AB$.
  2. Принимая $AB$ за одну из сторон угла, отложим от нее угол $BAM$, равный углу $α$.
  3. На прямой $AM$ отложим отрезок $AC$.
  4. Соединим точки $B$ и $C$.

Построим рисунок по составленному выше плану (рис. 1).

Из построения видно, что все начальные условия выполнены.

Так как сумма углов треугольника равняется $180^circ$. Значит, если угол α будет больше или равен $180^circ$, то задача решений иметь не будет.

В другом случае решение есть. Так как прямая $a$ — произвольная прямая, то таких треугольников будет бесконечное количество. Но, так как они все равны между собой по первому признаку, то будем считать, что решение этой задачи единственно.

Готовые работы на аналогичную тему

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Построение треугольника по трем сторонам

Постройте треугольник, если нам даны три его стороны.

Пусть нам даны отрезки $AB$ и $AC$ и $BC$. Нам нужно построить треугольник $ABC$.

Составим план построения:

  1. Проведем прямую $a$ и построим на ней отрезок $AB$.
  2. Построим $2$ окружности: первую с центром $A$ и радиусом $AC$, и вторую с центром $B$ и радиусом $BC$.
  3. Соединим одну из точек пересечения окружностей (которая будет точкой $C$) с точками $A$ и $B$.

Построим рисунок по составленному выше плану (рис. 2).

Из построения видно, что все начальные условия выполнены.

Из неравенства треугольника мы знаем, что любая сторона должна быть меньше суммы двух других. Следовательно, когда такое неравенство не выполняется для исходных трех отрезков, задача решения иметь не будет.

Так как окружности из построения имеют две точки пересечения, то мы можем построить два таких треугольника. Но, так как они равны между собой по третьему признаку, то будем считать, что решение этой задачи единственно.

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Построение треугольника по стороне и двум прилежащим к ней углам

Постройте треугольник, если нам дана одна стороны и углы $α$ и $β$, прилегающие к ней.

Пусть нам дан отрезок $BC$ и углы $α$ и $β$. Нам нужно построить треугольник $ABC$, где $∠B=α$, а $∠C=β$.

Составим план построения:

  1. Проведем прямую $a$ и построим на ней отрезок $BC$.
  2. Построим в вершине $B$ к стороне $BC$ угол $∠ K=α$.
  3. Построим в вершине $C$ к стороне $BC$ угол $∠ M=β$.
  4. Соединим точку пересечения (это и будет точка $A$) лучей $∠ K$ и $∠ M$ с точками $C$ и $B$,

Построим рисунок по составленному выше плану (рис. 3).

Из построения видно, что все начальные условия выполнены.

Так как сумма углов треугольника равняется $180^circ$, то, если $α+β≥180^circ$ задача решений иметь не будет.

В другом случае решение есть. Так как углы можем строить с двух сторон, то мы можем построить два таких треугольника. Но, так как они равны между собой по второму признаку, то будем считать, что решение этой задачи единственно.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 12 07 2021

Видео:Площадь прямоугольного треугольника. Как найти площадь прямоугольного треугольника?Скачать

Площадь прямоугольного треугольника. Как найти площадь прямоугольного треугольника?

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем Как найти план треугольника.

Как найти план треугольника
Как найти план треугольника
Как найти план треугольника
Как найти план треугольника(1)
Как найти план треугольника(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Как найти план треугольника.

Пример 1. Известны стороны треугольника ABC: Как найти план треугольникаНайти Как найти план треугольника(Рис.1).

Решение. Из формул (1) и (2) находим:

Как найти план треугольникаКак найти план треугольника.
Как найти план треугольникаКак найти план треугольника.
Как найти план треугольника, Как найти план треугольника.

И, наконец, находим угол C:

Как найти план треугольникаКак найти план треугольника

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Как найти план треугольника

Найдем сторону c используя теорему косинусов:

Как найти план треугольника.
Как найти план треугольника.

Далее, из формулы

Как найти план треугольника.
Как найти план треугольника.(3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Как найти план треугольника.

Пример 2. Известны две стороны треугольника ABC: Как найти план треугольникаи Как найти план треугольника(Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

Как найти план треугольника,
Как найти план треугольникаКак найти план треугольникаКак найти план треугольника.

Из формулы (3) найдем cosA:

Как найти план треугольникаКак найти план треугольника
Как найти план треугольника.

Поскольку уже нам известны два угла то находим третий:

Как найти план треугольникаКак найти план треугольника.

Видео:Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.Скачать

Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Как найти план треугольника

Так как, уже известны два угла, то можно найти третий:

Как найти план треугольника.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Как найти план треугольника, Как найти план треугольника.
Как найти план треугольника, Как найти план треугольника.

Пример 3. Известна одна сторона треугольника ABC: Как найти план треугольникаи углы Как найти план треугольника(Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Как найти план треугольникаКак найти план треугольника

Найдем сторону b. Из теоремы синусов имеем:

Как найти план треугольника
Как найти план треугольника

Найдем сторону с. Из теоремы синусов имеем:

Видео:ПОЧЕМУ МЫ С ЖИТЕЛЯМИ ПРОСИМ ПОМОЩИ В МАЙНКРАФТ | Компот MinecraftСкачать

ПОЧЕМУ МЫ С ЖИТЕЛЯМИ ПРОСИМ ПОМОЩИ В МАЙНКРАФТ | Компот Minecraft

Как найти площадь треугольника – все способы от самых простых до самых сложных

Зависит от того, какой треугольник.

Как найти план треугольника

Чтобы найти площадь треугольника, надо сначала определить тип треугольника: прямоугольный, равнобедренный, равносторонний. Если он у вас не такой – отталкивайтесь от других данных: высоты, вписанной или описанной окружности, длин сторон. Привожу все формулы ниже.

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Если треугольник прямоугольный

То есть один из его углов равен 90 градусам.

Надо перемножить катеты и поделить на два. Катеты – это две меньшие стороны, в сравнении с гипотенузой. Гипотенуза – это самая длинная сторона, она всегда находится напротив угла в 90 градусов.

Как найти план треугольника

Видео:Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математике

Если он равнобедренный

То есть у него равны боковые стороны. В таком случае надо провести высоту к основанию (той стороне, которая не равна «бедрам»), перемножить высоту с основанием и поделить результат на два.

Как найти план треугольника

Видео:Как найти площадь треугольника без формулы?Скачать

Как найти площадь треугольника без формулы?

Если он равносторонний

То есть все три стороны равны. Ваши действия такие:

  1. Найдите квадрат стороны – умножьте эту сторону на нее же. Если у вас сторона равна 4, умножьте 4 на 4, будет 16.
  2. Умножьте полученное значение на корень из 3. Это примерно 1,732050807568877293527.
  3. Поделите все на 4.

Как найти план треугольника

Видео:ПОЧЕМУ НЕЛЬЗЯ ЗАХОДИТЬ В КРАСНЫЙ КВАДРАТ ЭТОГО ЖИТЕЛЯ В МАЙНКРАФТ | Компот MinecraftСкачать

ПОЧЕМУ НЕЛЬЗЯ ЗАХОДИТЬ В КРАСНЫЙ КВАДРАТ ЭТОГО ЖИТЕЛЯ В МАЙНКРАФТ | Компот Minecraft

Если известна сторона и высота

Площадь любого треугольника равна половине произведения стороны на высоту, которая к этой стороне проведена. Именно к этой, а не к какой-то другой.

Как найти план треугольника

Чтобы провести высоту к стороне, надо найти вершину (угол), которая противоположна этой стороне, а потом опустить из нее на сторону прямую линию под углом в 90 градусов. На картинке высота обозначена синим цветом и буквой h, а линия, на которую она опускается, красным цветом и буквой a.

Видео:👉 ФОРМУЛА ГЕРОНА. Площадь треугольника #shortsСкачать

👉 ФОРМУЛА ГЕРОНА. Площадь треугольника #shorts

Если известны две стороны и градус угла между ними

Если вы знаете, чему равны две стороны и угол между ними, то надо найти синус этого угла, умножить его на первую сторону, умножить на вторую и еще умножить на ½:

Как найти план треугольника

Видео:№546. План земельного участка имеет форму треугольника. Площадь изображенного наСкачать

№546. План земельного участка имеет форму треугольника. Площадь изображенного на

Если известны длины трех сторон

  1. Найдите периметр. Для этого сложите все три стороны.
  2. Найдите полупериметр – разделите периметр на два. Запомните значение.
  3. Отнимите от полупериметра длину первой стороны. Запомните.
  4. Отнимите от полупериметра длину второй стороны. Тоже запомните.
  5. Отнимите от полупериметра длину третьей стороны. И ее запомните.
  6. Умножьте полупериметр на каждое из этих чисел (разницу с первой, второй и третьей стороной).
  7. Найдите квадратный корень.

Как найти план треугольника

Эта формула еще называется формулой Герона. Возьмите на заметку, если вдруг учитель спросит.

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Если известны три стороны и радиус описанной окружности

Окружность вы можете описать вокруг любого треугольника. Чтобы найти площадь «вписанного» треугольника – того, который «вписался» в окружность, надо перемножить три его стороны и поделить их на четыре радиуса. Смотрите картинку.

Как найти план треугольника

Видео:Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?Скачать

Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?

Если известны три стороны и радиус вписанной окружности

Если вам удалось вписать в треугольник окружность, значит она обязательно касается каждой из его сторон. Следовательно, расстояние от центра окружности до каждой из сторон треугольника – ее радиус.

Чтобы найти площадь, посчитайте сначала полупериметр – сложите все стороны и поделите на два. А потом умножьте его на радиус.

Как найти план треугольника

Это были все способы найти площадь треугольника. Спасибо, что дочитали статью до конца. Лайкните, если не трудно.

🔍 Видео

В ЭТОМ МЕСТЕ ПРОПАДАЮТ ЖИТЕЛИ В МАЙНКРАФТ | Компот MinecraftСкачать

В ЭТОМ МЕСТЕ ПРОПАДАЮТ ЖИТЕЛИ В МАЙНКРАФТ | Компот Minecraft

Как найти площадь этого треугольника, не зная формулы?Скачать

Как найти площадь этого треугольника, не зная формулы?

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.
Поделиться или сохранить к себе: