Как найти ортогональное дополнение вектора

Ортогональное дополнение. Ортогональная проекция вектора на подпространство

Пусть Е — евклидово пространство, а L — его подпространство. Множество L 1 — векторов в Е, ортогональных к каждому вектору подпространства L, называют ортогональным дополнением к подпространству L.

Теорема 8.6. Ортогональное дополнение IA к подпространству L евклидова пространства Е является подпространством в Е.

> Пусть уi,y2 € ZA. Тогда для любого вектора х ? L имеем: (ж, г/1) = 0 и (х,у2) = 0. Следовательно,

Как найти ортогональное дополнение вектора

т.е. вектор у + у2 ортогонален любому вектору х € L. Это означает, что У12 € ZA. Мы доказали, что сумма любых двух векторов множества ZA принадлежит ZA. Аналогично для любого действительного числа Л и любого хL имеем:

Как найти ортогональное дополнение вектора

т.е. вектор Л у ортогонален любому вектору х е L, а значит, принадлежит ZA. Таким образом, множество ZA замкнуто относительно сложения векторов и умножения векторов на числа и, следовательно, является подпространством. ?

Теорема 8.7. Конечномерное евклидово пространство Е является прямой суммой любого своего подпространства L и его ортогонального дополнения ZA, т.е. ортогональное дополнение к подпространству является его прямым дополнением.

> Пусть в пространстве L выбран ортогональный базис, состоящий из векторов ai, 02, . а&. Дополним его до ортогонального базиса пространства Е векторами fk+i, fk+2, •••, fn и по построенному базису

Как найти ортогональное дополнение вектора

разложим произвольный вектор х из Е. Тогда получим Как найти ортогональное дополнение векторагде положено

Как найти ортогональное дополнение вектора

Вектор у принадлежит подпространству Z, поскольку он является линейной комбинацией векторов базиса в L. Покажем, что вектор z принадлежит ортогональному дополнению LА Для этого замечаем, что по построению векторы fk+i, fk+2, fn ортогональны базисным

векторам ai, Это очевидное следствие теоремы о размерности суммы подпространств (см. теорему 4.23). ?

Следствие 8.3. Ортогональным дополнением к подпространству ZA является подпространство L.

> Так как каждый вектор из L ортогонален каждому вектору из ZA, то подпространство L содержится в (ZA)A Кроме того, выполняются соотношения Е = L 0 ZA, Е = (L— L )- L ф ZA, и по предыдущему следствию подпространства L и (ZA) 1 — имеют одинаковую размерность. Поэтому эти подпространства совпадают. ?

Следствие 8.4. Если L — подпространство в евклидовом пространстве Е, то любой вектор хЕ имеет разложение

Как найти ортогональное дополнение вектора

где хо G L, х 1 — G /А. Такое разложение единственно.

> Это утверждение — фактически расшифровка утверждения, что Е = L Ф ZA. ?

Пример 8.9. В четырехмерном пространстве Е± скалярное произведение в заданном базисе определено формулой (8.5). Построить ортогональное дополнение ZA для подпространства L = (а^аг), где a, = (1,1,1, l) r , а2 = (1, -1,1,1) т .

Решение. Векторы а и а2 составляют базис в L. Дополним эту систему до базиса в Е± векторами Ъ и 62, удовлетворяющими условиям Как найти ортогональное дополнение вектора

и положим L = (61,62)- Векторы 61, 62 являются решениями системы из двух уравнений (ai,x) = 0, (а,2,х) = 0, и в качестве их можно взять любую фундаментальную систему решений, например, 61 = (—1,0,1,0) т , 62 = (—1,0,0,1) т . Из выбора векторов 61 и 62 следует, что они составляют базис в L L , т.е. L = L L . ?

Пусть L — подпространство евклидова пространства Е. Каждый вектор у ? Е может быть единственным способом представлен в виде

Как найти ортогональное дополнение вектора

где уо ? L, а вектор у 1 — ортогонален к каждому вектору из L, т.е. у 1 — ? L х . Вектор уо называют ортогональной проекцией вектора у на пространство L и обозначают прьУ, а вектор y L называют ортогональной составляющей вектора у. Очевидно, что если у ? L, то прьу = у, и, наоборот, если прьу = : Действительно, пусть у — произвольный вектор, опущенный из конца вектора х на подпространство L и х 1 — — ортогональная составляющая вектора х, т.е. перпендикуляр, опущенный из конца вектора х на подпространство L. Тогда

Как найти ортогональное дополнение вектора

поскольку концы векторов у их 1 лежат в L. Поэтому

Как найти ортогональное дополнение вектора

так как векторы у — х 1 — их 1 ортогональны. ?

Доказанные утверждения является естественным обобщением известного из элементарной геометрии утверждения о том, что перпендикуляр короче любой наклонной, опущенной из той же точки на плоскость.

Длину ортогональной составляющей х 1 — вектора х принимают за кратчайшее расстояние от вектора х до подпространства L.

Ортогональная проекция вектора у на подпространство L является частным случаем проекции вектора на подпространство параллельно подпространству L2, являющемуся прямым дополнением к L (см. разд. 4.11). В случае ортогональной проекции Ь2 = Ь 1 .

На практике при отыскании ортогональной проекции вектора х на подпространство L = (ai, а2, •••?> &fc) поступают следующим образом. В разложении

Как найти ортогональное дополнение вектора

вектора х на ортогональную проекцию жо = npLT и ортогональную составляющую х 1 — вектор Xq можно представить в виде линейной комбинации Как найти ортогональное дополнение вектора

Тогда равенство х = Хо + х 1 принимает вид:

Как найти ортогональное дополнение вектора

Для отыскания коэффициентов oi, 02, . о& умножим равенство (8.16) скалярно на векторы а, а2, . ак- Учитывая, что (а^аг 1- ) = = 2,х ± ) = . = (ак,х?*?) = 0, получаем систему линейных уравнений

Как найти ортогональное дополнение вектора

относительно неизвестных оц, а2, . а к. Из этой системы находят коэффициенты oi, а2, . о^. В матричной форме равенство (8.15) и система (8.17) записываются в виде

Как найти ортогональное дополнение вектора

где А = (oi, а2. а*,) — матрица, для которой столбцами являются столбцы координат векторов а, а2, . а&; о (01,02, . о*;) т — столбец высоты к. Использование системы (8.17), или, что тоже самое системы (8.19), указывает на то (см. п.8.21), что отыскание коэффициентов ai, а2, . ак для равенства (8.15) равносильно решению методом наименьших квадратов системы А о = х с неизвестным столбцом

Если система векторов oi, 2, • ••, ftfc линейно независимая, то в равенстве (8.19) матрица А т А невырожденная, так как она представляет собой матрицу Грама этой системы векторов (см. теорему 8.1). В этом случае из уравнения (8.19) однозначно определяется столбец а: Как найти ортогональное дополнение вектора

Учитывая равенство (8.18), заключаем, что Как найти ортогональное дополнение вектора

Пример 8.10. Для вектора х = (3,6,0) т найти ортогональную проекцию Xq на подпространство L = (а^аг) и ортогональную составляющую т х , если ay = (1, —1,0) т , т .

Решение. Запишем xq = npL.x в виде хд = ау ау + Коэффициенты ау и «2 можно найти, решив систему (8.17), которая в данном случае имеет вид:

Как найти ортогональное дополнение вектора

Вычислим все скалярные произведения. В результате получим

Как найти ортогональное дополнение вектора

Решая систему относительно неизвестных од иаг, находим, что од = = су2 = 3. Таким образом, пр/,т = Зау + Заг = (0,3,3) т и х^ = = х — npLT = (3,3, —3) т .

Поскольку векторы а у, а2 линейно независимые, то можно также воспользоваться формулой (8.20). Вычислив

Как найти ортогональное дополнение вектора

Как найти ортогональное дополнение вектора Как найти ортогональное дополнение вектора

Заметим, что если е = (ei, е2п) — ортоиормированный базис в евклидовом пространстве Е, а подпространство L является линейной оболочкой части базисных векторов, например, L = (ei, е2. е*,), то для любого вектора

Как найти ортогональное дополнение вектора

ортогональная проекция прь-т совпадает с суммой слагаемых в разложении х по базису, соответствующих векторам, порождающим L. а ортогональная проекция — с суммой всех остальных слагаемых, т.е.

Как найти ортогональное дополнение вектора

Например, для вектора х = (1,2, 3,4,5) т проекция на подпространство L = (б1,е2,ез) равна Xq = (1,2,3,0,0) т , и его ортогональная составляющая х 1 — = (0,0,0,4, 5) т . ?

Видео:Ортогональное дополнение (задача 1366)Скачать

Ортогональное дополнение (задача 1366)

Ортогональные дополнения евклидова пространства

Ортогональным дополнением непустого подмножества [math]M[/math] евклидова пространства [math]mathbb[/math] называется множество векторов, ортогональных каждому вектору из [math]M[/math] . Ортогональное дополнение обозначается

forall mathbfin M Bigr>.[/math]

Рассмотрим примеры ортогональных дополнений евклидова пространства.

1. Ортогональным дополнением нулевого подпространства [math] <mathbf> triangleleft mathbb[/math] служит все пространство [math]mathbb colon, <mathbf>^= mathbb[/math] . Ортогональным дополнением всего пространства является его нулевое подпространство [math]mathbb^= <mathbf>[/math] .

2. Пусть в пространстве [math][/math] радиус-векторов (с началом в точке [math]O[/math] ) за даны три взаимно перпендикулярных радиус-вектора [math]overrightarrow[/math] , [math]overrightarrow[/math] и [math]overrightarrow[/math] . Тогда ортогональным дополнением вектора [math]overrightarrow[/math] является множество радиус- векторов на плоскости, содержащей векторы [math]overrightarrow[/math] и [math]overrightarrow[/math] , точнее, [math]<overrightarrow>^= operatorname(overrightarrow,overrightarrow)[/math] . Ортогональным дополнением векторов [math]overrightarrow[/math] и [math]overrightarrow[/math] служит множество радиус-векторов на прямой, содержащей вектор [math]overrightarrowcolon <overrightarrow,overrightarrow>^= operatorname (overrightarrow)[/math] . Ортогональным дополнение трех заданных векторов служит нулевой радиус-вектор: [math]<overrightarrow, overrightarrow, overrightarrow>^= <overrightarrow>[/math] .

3. В пространстве [math]P_2(mathbb)[/math] многочленов степени не выше второй со скалярным произведением (8.29) задано подмножество [math]P_0(mathbb)[/math] — многочленов нулевой степени. Найдем ортогональное дополнение этого подмножества. Для этого приравняем нулю скалярное произведение многочлена [math]p_2(x)=ax^2+bx+c[/math] на постоянный многочлен [math]p_0(x)=dcolon[/math] [math]langle p_2(x),p_0(x)rangle= acdot0+bcdot0+ccdot d=0[/math] . Поскольку величина [math]d[/math] произвольная, то [math]c=0[/math] . Следовательно, ортогональным дополнением подмножества [math]P_0(mathbb)[/math] является множество многочленов из [math]P_0(mathbb)[/math] с нулевым свободным членом.

Видео:Ортогональное дополнение. ПримерСкачать

Ортогональное дополнение. Пример

Свойства ортогонального дополнения

Рассмотрим свойства ортогональных дополнений подмножеств n-мерного евклидова пространства [math]mathbb[/math] .

1. Ортогональное дополнение [math]M^[/math] непустого подмножества [math]Msubset mathbb[/math] является линейным подпространством, т.е. [math]M^ triangleleft mathbb[/math] , и справедливо включение [math]Msubset (M^)^[/math] .

В самом деле, множество [math]M^[/math] замкнуто по отношению к операциям сложения векторов и умножения вектора на число, так как сумма двух век торов, ортогональных [math]M[/math] , ортогональна [math]M[/math] , и произведение вектора, ортогонального [math]M[/math] , на любое число является вектором, ортогональным [math]M[/math] . До кажем включение [math]Msubset (M^)^[/math] . Пусть [math]mathbfin M[/math] , тогда [math]langle mathbf,mathbfrangle=0[/math] для любого вектора [math]mathbfin M^[/math] . Но это означает, что [math]mathbfsubset (M^)^[/math] .

2. Пересечение любого непустого подмножества [math]Msubset mathbb[/math] со своим ортогональным дополнением есть нулевой вектор: [math]Mcap M^= <mathbf>[/math] .

Действительно, только нулевой вектор ортогонален самому себе.

3. Если [math]L[/math] — подпространство [math]mathbb

(Ltriangleleft mathbb)[/math] , то [math]mathbb=Loplus L^[/math] .

Действительно, возьмем в [math]L[/math] ортогональный базис [math](mathbf)= (mathbf_1, ldots,mathbf_k)[/math] . До полним его векторами [math](mathbf)= (mathbf_,ldots, mathbf_n)[/math] до ортогонального базиса [math](mathbf),,(mathbf)[/math] всего пространства [math]mathbb[/math] . Тогда произвольный вектор [math]mathbfin mathbb[/math] можно представить в виде суммы

где [math]mathbfin L[/math] , а [math]mathbfin L^[/math] , так как [math]langle mathbf,mathbf_irangle= sum_^mathbflangle mathbf_j, mathbf_i rangle_<_>=0[/math] для [math]i=1,ldots,k[/math] . Следовательно, любой вектор пространства [math]mathbb[/math] раскладывается по подпространствам [math]L[/math] и [math]L^[/math] , т.е. [math]mathbb= L+L^[/math] . Эта алгебраическая сумма является прямой суммой по свойству 2, поскольку [math]Lcap L^=<mathbf>[/math] . Следовательно, [math]mathbb=Loplus L^[/math] .

4. Если [math]Ltriangleleft mathbb[/math] , то [math]dim<L^>= dimmathbb-dim[/math] .

5. Если [math]L[/math] — подпространство [math]mathbb[/math] , то [math]L=(L^)^[/math] .

Из первого свойства следует включение [math]Lsubset(L^)^[/math] . Докажем, что [math](L^)^subset L[/math] . Действительно, пусть [math]mathbfin (L^)^[/math] . По свойству 3: [math]mathbf=mathbf+mathbf[/math] , где [math]mathbfin L,

mathbfin L^[/math] . Найдем скалярное произведение

Следовательно, [math]langle mathbf,mathbfrangle=0[/math] , и согласно аксиоме 4 скалярного произведения [math]mathbf=mathbf[/math] , поэтому [math]mathbf=mathbf+ mathbf= mathbf+mathbf=mathbfin L[/math] . Значит, [math](L^)^subset L[/math] . Из двух включений [math]Lsubset (L^)^[/math] и [math](L^)^ subset L[/math] следует равенство [math]L=(L^)^[/math] .

6. Если [math]L_1triangleleft mathbb[/math] и [math]L_2triangleleft mathbb[/math] , то [math](L_1+L_2)^=L_1^cap L_2^[/math] и [math](L_1cap L_2)^= L_1^+ L_2^[/math] .

Последние свойства аналогичны свойствам алгебраических дополнений.

Видео:Ортогональное дополнение. ТемаСкачать

Ортогональное дополнение. Тема

Нахождение ортогонального дополнения подпространства

Ранее для описания подпространств линейных пространств использовались два способа описания (внешний и внутренний). Рассмотрим применение этих способов описания для нахождения ортогональных дополнений подпространств. Учитывая изоморфизм евклидовых пространств, будем рассматривать арифметическое пространство [math]mathbb^n[/math] со скалярным произведением (8.27).

Для заданного подпространства [math]Ltriangleleft mathbb^n[/math] требуется найти его ортогональное дополнение [math]L^[/math] . В зависимости от способа описания подпространства [math]L[/math] используем одно из следующих двух утверждений.

1. Если подпространство [math]Ltriangleleft mathbb^n[/math] задано как линейная оболочка [math]L=operatorname(a_1,ldots,a_k)[/math] столбцов матрицы [math]A= begina_1&cdots&a_kend[/math] , то множество решений однородной системы [math]Ax=o[/math] является его ортогональным дополнением [math]L^triangleleft mathbb^n[/math] , т.е.

2. Если подпространство [math]Ltriangleleft mathbb^n[/math] задано как множество решений однородной системы [math]Ax=o[/math] [math]m[/math] уравнений с [math]n[/math] неизвестными, то линейная оболочка столбцов [math]a_1^T,ldots,a_m^T[/math] транспонированной матрицы [math]A^T=begina_1^T&cdots&a_m^Tend[/math] является его ортогональным дополнением [math]L^triangleleft mathbb^n[/math] , т.е.

где [math]a_i^T[/math] — i-й столбец матрицы [math]A^T[/math] .

Докажем, например, первое утверждение. Линейное однородное уравнение

1. В отличие от алгебраического дополнения [math]L^[/math] подпространстве [math]Ltriangleleft mathbb[/math] ортогональное дополнение [math]L^[/math] находится однозначно.

2. Ортогональное дополнение [math]L^[/math] подпространства [math]Ltriangleleft mathbb[/math] в силу свойства 3 является также и алгебраическим дополнением. Это обстоятельстве учитывалось при нахождении алгебраических дополнений при помощи утверждений (8.16) и (8.17), которые по существу совпадают с утверждениями (8.34) и (8.35).

Пример 8.19. В примере 8.10 для линейного подпространства [math]L= operatorname[(t-1)^2,(t+1)^3][/math] пространства [math]P_3(mathbb)[/math] многочленов не более, чем 3-й степени, было найдено алгебраическое дополнение

Доказать, что это алгебраическое дополнение является ортогональным дополнением подпространства [math]L[/math] евклидова пространства [math]P_3(mathbb)[/math] со скалярным произведением (8.29).

Решение. Для решения задачи достаточно показать, что образующие подпространства [math]L:[/math]

ортогональны образующим алгебраического дополнения [math]L^:[/math]

💡 Видео

Лекция 22. Ортогональное дополнениеСкачать

Лекция 22. Ортогональное дополнение

Лекция №;12. Ортогональное дополнение. Ортогонализация. Сопряженное пространствоСкачать

Лекция №;12. Ортогональное дополнение.  Ортогонализация.  Сопряженное пространство

ОртогональностьСкачать

Ортогональность

Ортогональное дополнение. Еще один примерСкачать

Ортогональное дополнение. Еще один пример

2 42 Ортогональность векторовСкачать

2 42 Ортогональность векторов

Ортогональная проекция и ортогональная составляющая. ТемаСкачать

Ортогональная проекция и ортогональная составляющая. Тема

Ортогональность. ТемаСкачать

Ортогональность. Тема

Орт вектора. Нормировать вектор. Найти единичный векторСкачать

Орт вектора.  Нормировать вектор.  Найти единичный вектор

A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.Скачать

A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Ортогональное дополнение. ВопросыСкачать

Ортогональное дополнение. Вопросы

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Ортогональное дополнение. ОтветыСкачать

Ортогональное дополнение. Ответы

Коллинеарность векторовСкачать

Коллинеарность векторов

Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Левашова Н. Т. - Линейная алгебра. Семинары - Ортогональное дополнениеСкачать

Левашова Н. Т. - Линейная алгебра. Семинары - Ортогональное дополнение

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.
Поделиться или сохранить к себе: