Как найти ординату треугольника

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:№979. Найдите ординату точки М, лежащеСкачать

№979. Найдите ординату точки М, лежаще

Прямоугольная система координат на плоскости и ее применение с примерами

Содержание:

Видео:Алгебра 7 класс. 28 сентября. Зная абсциссу найти ординатуСкачать

Алгебра 7 класс. 28 сентября. Зная абсциссу найти ординату

Прямоугольная система координат на плоскости и ее применение к простейшим задачам

Прямоугольные координаты точки на плоскости

Координатами точки на плоскости называются числа, определяющие положение этой точки на плоскости.

Прямоугольные декартовы координаты (по имени математика Декарта) на плоскости вводятся следующим образом: на этой плоскости выбираются точка О (начало координат) и проходящие через нее взаимно перпендикулярные направленные прямые Ох и Оу (оси координат) (рис. 1). Для удобства рассмотрения будем предполагать, что ось Ох 0ось абсцисс) горизонтальна и направлена слева направо, а ось Оу (ось ординат) вертикальна и направлена снизу вверх; таким образом, ось О у повернута относительно оси Ох на угол 90° против хода часовой стрелки 1 ). Кроме того, выбирается единица масштаба для измерения расстояний.

Как найти ординату треугольника

Для данной точки М введем в рассмотрение два числа: абсциссу х и ординату у этой точки.

Абсциссой х называется число, выражающее в некотором масштабе расстояние от точки до оси ординат, взятое со знаком плюс, если точка лежит вправо от оси ординат, и со знаком минус, если точка лежит влево от оси ординат. Ординатой у называется число, выражающее в некотором масштабе (обыкновенно в том же, как и для абсциссы) расстояние от точки до оси абсцисс, взятое со знаком плюс, если точка лежит выше оси абсцисс, и со знаком минус, если точка лежит ниже оси абсцисс.

Эти два числа х и у и принимаются за координаты точки М, так как они полностью определяют положение точки на плоскости, а именно: каждой паре чисел х и у соответствует единственная точка, координатами которой являются эти числа; и обратно, каждая точка плоскости имеет определенные координаты х и у. Если точка М имеет координаты х и у, то это обстоятельство обозначают так: М (х, у) (на первом месте ставится абсцисса х, а на втором — ордината у). При записи координат знак плюс, как обычно, можно опускать.

Оси Ох и Оу разбивают плоскость на четыре части, называемые квадрантами. Производя нумерацию квадрантов (I, II, III и IV) в направлении против хода часовой стрелки, отправляясь от того квадранта, где обе координаты положительны, получим следующую таблицу знаков координат: Как найти ординату треугольника

Отрезок ОМ у соединяющий начало координат О с точкой М (рис. 2), называется ее радиусом-вектором. Обозначая через ф угол, образованный отрезком ОМ с положительным направлением оси Ох, и через Как найти ординату треугольникаего длину, для точки М, лежащей в I квадранте, из треугольников ОММ’ и ОММ» получим Как найти ординату треугольникаКак найти ординату треугольника

Нетрудно убедиться, что формулы (1) будут справедливы для координат точек всех квадрантов. Таким образом, знак абсциссы х точки М совпадает со знаком косинуса, а знак ее ординаты у — со знаком синуса в соответствующем квадранте.

Легко видеть, что если точка лежит на оси абсцисс, то ее ордината у равна нулю; если же она лежит на оси ординат, ее абсцисса х равна нулю, и обратно. Следовательно, если точка совпадает с началом координат, то равны нулю обе ее координаты.

Как найти ординату треугольника

В дальнейшем прямоугольные декартовы координаты для краткости будем называть просто прямоугольными координатами.

В следующих параграфах рассмотрим некоторые простейшие задачи на применение прямоугольных координат на плоскости.

Преобразование прямоугольной системы координат

При решении задач иногда выгодно вместо данной прямоугольной системы координат Как найти ординату треугольникавыбрать другую прямоугольную систему координат О’х’у определенным образом ориентированную относительно первой. Например, при межпланетных путешествиях можно пользоваться системой координат, связанной с центром Земли (геоцентрическая система координат); однако более удобно использовать систему координат, связанную с центром Солнца (гелиоцентрическая система координат).

Возникает вопрос о том, как от одной системы координат перейти к другой.

Рассмотрим сначала простейший случай (рис. 3), когда оси «новой системы координат» О’х’у’ параллельны соответствующим осям «старой системы координат о Оху и имеют одинаковые направления с ними (параллельный перенос системы координат).

Как найти ординату треугольника

Пусть начало новой системы координат — точка О’ — имеет координаты (а, Ь) в старой системе координат. Точка М плоскости со «старыми координатами» (х, у) будет иметь некоторые «новые координаты» [х у’] (для ясности мы их обозначаем квадратными скобками). Из рис. 3 непосредственно получаем

х’ = х — а, у’ = у — b, (1)

т. е. новые координаты точки равны ее старым координатам минус старые координаты нового начала.

Обратно, из (1) находим

х = х’ + а, у = у’ + Ь. (2)

Пусть теперь «новая система» координат Ох’у при неизменном начале О, повернута относительно «старой системы» Оху на угол а (рис. 4), т. е. Как найти ординату треугольника, причем а считается положительным, если поворот осуществляется против хода часовой стрелки, и отрицательным — в противоположном случае (поворот системы координат). Как найти ординату треугольника

Обозначим через Как найти ординату треугольникаугол, образованный радиусом-вектором г = ОМ точки М с осью Ох’; тогда отрезок ОМ, с учетом знака угла Как найти ординату треугольника), будет составлять с осью Ох угол Как найти ординату треугольника. Отсюда на основании формул (1) из при любом расположении точки М имеем

Как найти ординату треугольника

Как найти ординату треугольника

Так как новые координаты точки М, очевидно, есть

Как найти ординату треугольника

то из формул (3) и (4) получаем

Как найти ординату треугольника

Для запоминания формул (6) используют следующий мнемонический прием: говорят, что первая формула (6) содержит полный беспорядок, а вторая — полный порядок. Действительно, в первой формуле на первом месте стоит cos, на втором — sin; кроме того, присутствует знак минус. Во второй формуле (6) никаких нарушений правильности в этом смысле нет.

Формулы (6) выражают старые координаты х и у точки М через ее новые х’ и у’. Чтобы выразить новые координаты х’ и у’ через старые х и у, достаточно разрешить систему (6) относительно х’и у’. Однако можно поступить проще, а именно принять систему Ох’у’ за «старую», а систему Оху за «новую». Тогда, учитывая, что вторая система повернута относительно первой на угол — а, заменяя в формулах (6) х’ и у’ соответственно на х и у и обратно и принимая во внимание, что cos (-a) = cos a, sin (-a) = -sin a, будем иметь

Как найти ординату треугольника

Наконец, в общем случае, когда новое начало координат есть точка О’ (a, Ь) и ось О’х’ образует с осью Ох угол а, соединяя формулы (2) и (6), находим

Как найти ординату треугольника

Здесь угол Р считается положительным, если радиус-вектор ОМ повернут относительно оси Ох’ против хода часовой стрелки, и отрицательным, если он повернут относительно этой оси по ходу часовой стрелки.

Аналогично, из формул (1) и (7) получаем

Как найти ординату треугольника

Из формул (8) и (9) вытекает, что формулы перехода от одной прямоугольной системы координат к другой прямоугольной системе координат являются линейными функциями как новых, так и старых координат, т. е. содержат эти координаты в первой степени.

Пример:

Отрезок ОМ, где точка М имеет координаты (х, г/), повернут на угол а = 120° против хода часовой стрелки (рис. 5). Каковы будут координаты х’ и у’ нового положения М’ точки М?

Решение:

Предполагая, что с точкой М связана подвижная система координат Ох’у на основании формул (6) будем иметь

Как найти ординату треугольника

Расстояние между двумя точками на плоскости

1) Найдем сначала расстояние г от начала координат О (0, 0) до точки М (х, у) (рис. 6).

Расстояние г = ОМ, очевидно, является гипотенузой прямоугольного Как найти ординату треугольникаОММ’ с катетами Как найти ординату треугольника. По теореме Пифагора получаем

Как найти ординату треугольника

Таким образом, расстояние от начала координат до некоторой точки равно корню квадратному из суммы квадратов координат этой точки.

Как найти ординату треугольника

2) В общем случае, пусть для точек A Как найти ординату треугольникаи Б Как найти ординату треугольника(рис. 7) требуется найти расстояние d = АВ между этими точками.

Выберем новую систему координат Ах’у’ начало которой совпадает с точкой А и оси которой параллельны прежним осям и имеют, соответственно, одинаковые направления с ними. Тогда в новой системе координат точки Л и В будут иметь координаты А [0, 0] и Б Как найти ординату треугольника. Отсюда на основании формулы (1) получаем

Как найти ординату треугольника

т. е. расстояние между двумя точками плоскости (при любом их расположении) равно корню квадратному из суммы квадратов разностей одноименных координат этих точек.

Замечание. Формула (2) дает также длину отрезка АВ. Легко определить направление этого отрезка. Из прямоугольного А ABC имеем

Как найти ординату треугольника

(dx и dy называются проекциями отрезка АВ на оси координат Оху). Отсюда получаем Как найти ординату треугольникагде d определяется формулой (2).

Пример:

Танк на местности переместился из точки А (-30, 80) в точку Б (50, 20) (относительно некоторой системы координат Оху)> причем координаты точек даны в километрах. Найти путь d, пройденный танком, если он двигался, не меняя направления.

Решение:

Применяя формулу (2), имеем

Как найти ординату треугольника

Деление отрезка в данном отношении

Предположим, что отрезок АВ (рис. 8), соединяющий точки A (xl9 уг) и В (x2t у2), разделен точкой С на два отрезка АС и СБ, причем отношение АС к СБ равно I (I > 0):

Как найти ординату треугольника

Требуется выразить координаты х и у точки С(х, у) через координаты концов отрезка АВ.

Опустим перпендикуляры Как найти ординату треугольникасоответственно из точек А, В и С на ось Ох. Тогда получим, что три параллельные прямые Как найти ординату треугольникапересекают стороны угла (не обозначенного на рисунке), образованного прямыми АВ и Ох. Как известно из элементарной геометрии, пучок параллельных прямых рассекает стороны угла на пропорциональные части; поэтому

Как найти ординату треугольника

откуда на основании равенства (1) будем иметь

Как найти ординату треугольника

Из рис. 8 видно, что Как найти ординату треугольниках2 — х. Подставляя эти выражения в формулу (2), получимКак найти ординату треугольника

Как найти ординату треугольника

Решая уравнение (3) относительно неизвестной абсциссы х, будем иметь

Как найти ординату треугольника

Как найти ординату треугольникаИтак, координаты точки С (ху у), делящей отрезок АВ в отношении / (считая от А к В), определяются формулами Как найти ординату треугольникаЕсли точка С делит отрезок АВ пополам, то АС = СВ и, следовательно, I = АС/СВ = 1. Обозначая координаты середины отрезка АВ через х, у, получим на основании формул (4) Как найти ординату треугольника

т. е. координаты середины отрезка равны полусуммам соответствующих координат его концов.

Примечание. При выводе формул (4) и (5) мы предполагали, что концы А и В отрезка АВ лежат в первом квадранте и, следовательно, координаты точек Аи В положительны. Легко доказать, что формулы (4) и (5) будут справедливы и в случае произвольного расположения отрезка АВ на координатной плоскости.

Пример:

Вычислить координаты точки С (х, у)> делящей отрезок АВ между точками А (-5, -3) и В (4, -6) в отношении АС/СВ = 3/2.

Решение:

В этом случае I = 3/2 и, следовательно,

Как найти ординату треугольника

Площадь треугольника

Пусть требуется найти площадь S треугольника ABC (рис. 9) с вершинами

Как найти ординату треугольника

Пусть АВ = с, АС = Ь, а углы, образованные этими сторонами с осью Ох, соответственно равны Как найти ординату треугольника.

На основании (см. замечание) имеем (рис. 9)

Как найти ординату треугольника

и Как найти ординату треугольника

Как найти ординату треугольника

Пусть Как найти ординату треугольника; очевидно (рис. 9), Как найти ординату треугольника. По известной формуле тригонометрии получаем

Как найти ординату треугольника

Отсюда в силу (1) и (2) имеем

Как найти ординату треугольника

Заметим, что формула (4) при ином расположении вершин может дать площадь треугольника S со знаком минус. Поэтому формулу для площади треугольника обычно пишут в виде

Как найти ординату треугольника

где знак выбирается так, чтобы для площади получалось положительное число,

Используя понятие определителя второго порядка

Как найти ординату треугольника

формулу (4′) можно записать в удобной для запоминания форме:

Как найти ординату треугольника

Формула (4′) упрощается, если точка А Как найти ординату треугольниканаходится в начале координат. А именно, полагая Как найти ординату треугольникаполучим

Как найти ординату треугольника

Отметим, что если точки А, В, С находятся на одной прямой, то площадь S = 0; и обратно, если S = 0, то вершины А, Б и С расположены на одной прямой.

Пример:

Вспаханное поле имеет форму треугольника с вершинами А (-2, -1), В (3, 5) и С (-1, 4) (размеры даны в километрах). Определить площадь S этого поля.

По формуле (5) имеемКак найти ординату треугольника

Замечание. Вычисление площади многоугольника сводится к вычислению площадей треугольников. Для этого достаточно разбить многоугольник на треугольники, площади которых вычисляют по формуле (4).

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Линии второго порядка
  • Полярные координаты
  • Непрерывность функции
  • Уравнения поверхности и линии в пространстве
  • Интегрирование рациональных дробей
  • Интегрирование тригонометрических функций
  • Интегрирование тригонометрических выражений
  • Интегрирование иррациональных функций

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Найти ординату точки пересечения графиков двух линейных функцийСкачать

Найти ординату точки пересечения графиков двух линейных функций

Задача 22142 1. Площадь треугольника ABC с вершинами.

Условие

Как найти ординату треугольника

1. Площадь треугольника ABC с вершинами А(-2; 1), В(2; 2), C(4; y) равна 15. Найти ординату вершины С.

Решение

Как найти ординату треугольника

Площадь треугольника равна половине модуля векторного произведения векторов СА и СB.
S (Δ ABC) =(1/2)*|vector×vector|

S (Δ ABC) = 1/2 * |4y-10|
S(Δ ABC) = |2у-5|.

По условию S(Δ ABC) =15,
получаем уравнение
|2у-5|=15.
2y-5=-15 или 2у-5=15
у=-5 или у=10

💥 Видео

№941. Найдите периметр треугольника MNP, если М (4; 0), N(12; -2), В (5; -9).Скачать

№941. Найдите периметр треугольника MNP, если М (4; 0), N(12; -2), В (5; -9).

Координаты середины отрезкаСкачать

Координаты середины отрезка

Система координат · Ось абсцисс и ось ординат · Координатная плоскость Урок Математики для 6 классаСкачать

Система координат · Ось абсцисс и ось ординат · Координатная плоскость Урок Математики для 6 класса

№948. На оси ординат найдите точку, равноудаленную от точек: а) А (-3; 5)Скачать

№948. На оси ординат найдите точку, равноудаленную от точек: а) А (-3; 5)

Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

АбсциссаСкачать

Абсцисса

координаты центра тяжести треугольникаСкачать

координаты центра тяжести треугольника

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )Скачать

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

Найти абсциссу точки пересечения графиков двух линейных функцийСкачать

Найти абсциссу точки пересечения графиков двух линейных функций

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.
Поделиться или сохранить к себе: