Как найти координату вектора зная его длину

Нахождение координат вектора

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

Видео:Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB , нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Как найти координату вектора зная его длину

Формулы для определения координат вектора

<table data-id="254" data-view-id="254_31110" data-title="Координаты вектора" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач

<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value=" AB = <Bx — Ax; By — Ay> » data-order=» AB = <Bx — Ax; By — Ay> » style=»min-width:55.0847%; width:55.0847%;»> AB = <Bx — Ax; By — Ay>Для трехмерных задач

<td data-cell-id="B2" data-x="1" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" AB = <Bx — Ax; By — Ay; Bz — Az> » data-order=» AB = <Bx — Ax; By — Ay; Bz — Az> «> AB = <Bx — Ax; By — Ay; Bz — Az>Для n-мерных векторов

<td data-cell-id="B3" data-x="1" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" AB = <B1 — A1; B2 — A2; . Bn — An> » data-order=» AB = <B1 — A1; B2 — A2; . Bn — An> «> AB = <B1 — A1; B2 — A2; . Bn — An>

Видео:Длина вектора через координаты. 9 класс.Скачать

Длина вектора через координаты. 9 класс.

Примеры задач

Задание 1
Найдем координаты вектора AB , если у его точек следующие координаты: , .

Задание 2
Определим координаты точки B вектора , если координаты точки .

Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = AB x + Ax = 6 + 2 = 8.
By = AB y + Ay = 14 + 5 = 19.

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Нахождение длины вектора, примеры и решения

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Длина вектора — основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Как найти координату вектора зная его длину

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

Как найти координату вектора зная его длину

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

Видео:9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

Ответ: A B → = 20 — 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Видео:№934. Найдите координаты вектора АВ, зная координаты его начала и конца: а) А (2; 7), B (-2; 7);Скачать

№934. Найдите координаты вектора АВ, зная координаты его начала и конца: а) А (2; 7), B (-2; 7);

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Видео:№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Как найти координату вектора зная его длину

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координату вектора зная его длину

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Как найти координату вектора зная его длину
Как найти координату вектора зная его длину

Длина вектора Как найти координату вектора зная его длинув пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Как найти координату вектора зная его длину

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Как найти координату вектора зная его длину

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Как найти координату вектора зная его длину

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы Как найти координату вектора зная его длинуи Как найти координату вектора зная его длину.

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Произведение вектора на число:

Как найти координату вектора зная его длину

Скалярное произведение векторов:

Как найти координату вектора зная его длину

Косинус угла между векторами:

Как найти координату вектора зная его длину

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Как найти координату вектора зная его длину

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами Как найти координату вектора зная его длинуи Как найти координату вектора зная его длину. Для этого нужны их координаты.

Как найти координату вектора зная его длину

Запишем координаты векторов:

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

и найдем косинус угла между векторами Как найти координату вектора зная его длинуи Как найти координату вектора зная его длину:

Как найти координату вектора зная его длину

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Как найти координату вектора зная его длину

Координаты точек A, B и C найти легко:

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Из прямоугольного треугольника AOS найдем Как найти координату вектора зная его длину

Координаты вершины пирамиды: Как найти координату вектора зная его длину

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Найдем координаты векторов Как найти координату вектора зная его длинуи Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

и угол между ними:

Как найти координату вектора зная его длину

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Как найти координату вектора зная его длину

Запишем координаты точек:

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Как найти координату вектора зная его длину

Найдем координаты векторов Как найти координату вектора зная его длинуи Как найти координату вектора зная его длину, а затем угол между ними:

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Видео:Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Плоскость в пространстве задается уравнением:

Как найти координату вектора зная его длину

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Как найти координату вектора зная его длину

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Как найти координату вектора зная его длину

Подставим в него по очереди координаты точек M, N и K.

Как найти координату вектора зная его длину

То есть A + C + D = 0.

Как найти координату вектора зная его длинуКак найти координату вектора зная его длину

Аналогично для точки K:

Как найти координату вектора зная его длину

Получили систему из трех уравнений:

Как найти координату вектора зная его длину

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Выразим C и B через A и подставим в третье уравнение:

Как найти координату вектора зная его длину

Решив систему, получим:

Как найти координату вектора зная его длину

Уравнение плоскости MNK имеет вид:

Как найти координату вектора зная его длину

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Как найти координату вектора зная его длину

Вектор Как найти координату вектора зная его длину— это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку Как найти координату вектора зная его длинуимеет вид:

Как найти координату вектора зная его длину

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Как найти координату вектора зная его длину

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Как найти координату вектора зная его длину

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Как найти координату вектора зная его длину

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор Как найти координату вектора зная его длинуперпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть: Как найти координату вектора зная его длину

Напишем уравнение плоскости AEF.

Как найти координату вектора зная его длину

Берем уравнение плоскости Как найти координату вектора зная его длинуи по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Как найти координату вектора зная его длинуКак найти координату вектора зная его длину

Как найти координату вектора зная его длину

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF: Как найти координату вектора зная его длину

Нормаль к плоскости AEF: Как найти координату вектора зная его длину

Найдем угол между плоскостями:

Как найти координату вектора зная его длину

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Как найти координату вектора зная его длину

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор Как найти координату вектора зная его длинуили, еще проще, вектор Как найти координату вектора зная его длину.

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Координаты вектора Как найти координату вектора зная его длину— тоже:

Как найти координату вектора зная его длину

Находим угол между плоскостями, равный углу между нормалями к ним:

Как найти координату вектора зная его длину

Зная косинус угла, находим его тангенс по формуле

Как найти координату вектора зная его длину

Получим:
Как найти координату вектора зная его длину

Ответ: Как найти координату вектора зная его длину

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть Как найти координату вектора зная его длину— вектор, лежащий на прямой m (или параллельный ей), Как найти координату вектора зная его длину— нормаль к плоскости α.

Как найти координату вектора зная его длину

Находим синус угла между прямой m и плоскостью α по формуле:

Как найти координату вектора зная его длину

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Находим координаты вектора Как найти координату вектора зная его длину.

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор Как найти координату вектора зная его длину.

Найдем угол между прямой и плоскостью:

Как найти координату вектора зная его длину

Ответ: Как найти координату вектора зная его длину

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

Как найти координату вектора зная его длину

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = Как найти координату вектора зная его длину, AD = Как найти координату вектора зная его длину. Высота параллелепипеда AA1 = Как найти координату вектора зная его длину. Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Как найти координату вектора зная его длину

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Как найти координату вектора зная его длинуКак найти координату вектора зная его длину

Решим эту систему. Выберем Как найти координату вектора зная его длину

Тогда Как найти координату вектора зная его длину

Уравнение плоскости A1DB имеет вид:

Как найти координату вектора зная его длину

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

Как найти координату вектора зная его длину

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

📸 Видео

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

91. Связь между координатами вектора и координатами его начала и концаСкачать

91. Связь между координатами вектора и координатами его начала и конца

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Как найти координаты вектора?Скачать

Как найти координаты вектора?

Координаты середины отрезкаСкачать

Координаты середины отрезка

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Координаты середины отрезка. Практическая часть. 11 класс.Скачать

Координаты середины отрезка. Практическая часть. 11 класс.

11 класс, 2 урок, Координаты вектораСкачать

11 класс, 2 урок, Координаты вектора

КООРДИНАТЫ ВЕКТОРА В ПРОСТРАНСТВЕ решение задачСкачать

КООРДИНАТЫ ВЕКТОРА В ПРОСТРАНСТВЕ решение задач
Поделиться или сохранить к себе: