Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Итоговая контрольная работа по математике 2 класс

Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Итоговая контрольная работа

Найди значение выражения.

Составь выражение и вычисли его значение.

Из 37 вычесть произведение чисел 8 и 3;

К частному чисел 49 и 7 прибавить 54.

Ширина прямоугольника равна 4 дм, а длина в 2 раза больше ширины. Найди площадь этого прямоугольника.

Начерти прямой угол с вершиной в точке А и непрямой угол с вершиной в точке В .

5*. Известно, что в четырёхугольнике один из углов прямой. Можно ли утверждать, что этот четырёхугольник является прямоугольником?

Итоговая контрольная работа

Найди значение выражения.

Составь выражение и вычисли его значение.

Из 62 вычесть произведение чисел 7 и 8;

К частному чисел 64 и 8 прибавить 45.

Длина прямоугольника равна 9 см , а ширина в 3 раза меньше длины. Найди площадь этого прямоугольника.

Отметь две точки К и М.

Начерти прямой угол с вершиной в точке К и непрямой угол с вершиной в точке М .

5*. Известно, что в прямоугольнике длины всех сторон по 5 см. Можно ли утверждать, что этот прямоугольник является квадратом?

Итоговая контрольная работа

Найди значение выражения.

Составь выражение и вычисли его значение.

Из частного 54 и 6, знака + и числа 37;

Из разности 34 и 27, знака ∙ и суммы 6 и 3.

Ширина прямоугольника в 4 раза меньше его длины. Вычисли площадь этого прямоугольника, если его длина равна 8 дм.

Начерти два прямых угла с вершиной в точке О . Выдели эти углы дугами разного цвета.

5*. Известно, что в прямоугольнике длины двух соседних сторон равны. Можно ли утверждать, что этот прямоугольник является квадратом?

Итоговая контрольная работа

Найди значение выражения.

Составь выражение и вычисли его значение.

Из произведения 7 и 9, знака — и числа 59;

Из суммы 57 и 15, знака : и разности 74 и 65.

Длина прямоугольника в 3 раза больше его ширины. Вычисли площадь этого прямоугольника, если его ширина равна 3м.

Начерти два прямых угла с вершиной в точке С . Выдели эти углы дугами разного цвета.

5*. Известно, что в четырёхугольнике длины всех сторон равны. Можно ли утверждать, что этот четырёхугольник является квадратом? Запиши один из ответов: да или нет.

Итоговая контрольная работа

Найди значение выражения.

Сумма чисел 24 и 16 больше неизвестного числа в 5 раз. Чему равно неизвестное число?

Произведение чисел 6 и 7 меньше неизвестного числа на 5. Чему равно неизвестное число?

Ширина прямоугольника составляет восьмую часть его длины. Вычисли площадь этого прямоугольника, если его длина равна

Начерти любой треугольник АВС так, чтобы его угол А был прямым.

Запиши, какими будут т два других угла треугольника: прямыми или непрямыми.

5*. Известно, что в четырёхугольнике длины диагоналей равны. Можно ли утверждать, что этот четырёхугольник является прямоугольником?

Итоговая контрольная работа

Найди значение выражения.

Разность чисел 36 и 29 меньше неизвестного числа в 6 раз. Чему равно неизвестное число?

Частное чисел 81 и 9 больше неизвестного числа на 6. Чему равно неизвестное число?

Ширина прямоугольника составляет седьмую часть его длины. Вычисли площадь этого прямоугольника, если его длина равна

Начерти какой – нибудь треугольник МРС так, чтобы его угол Р был прямым.

Запиши, какими будут два других угла треугольника: прямыми или непрямыми.

5*. Известно, что в четырёхугольнике длины противоположных сторон равны. Можно ли утверждать, что этот четырёхугольник является прямоугольником?

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 939 человек из 79 регионов

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 697 человек из 75 регионов

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 334 человека из 73 регионов

Ищем педагогов в команду «Инфоурок»

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

  • Фонарёва Галина НиколаевнаНаписать 1512 01.06.2017

Номер материала: ДБ-522805

    01.06.2017 305
    01.06.2017 463
    01.06.2017 1492
    01.06.2017 2332
    01.06.2017 300
    01.06.2017 448
    01.06.2017 927

Не нашли то, что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Детский омбудсмен предложила ужесточить наказание за преступления против детей

Время чтения: 1 минута

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Минпросвещения готовит рекомендации по построению «идеальной школы»

Время чтения: 1 минута

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Видео:Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать

Геометрия 10 класс (Урок№2 - Четырехугольники.)

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Вопрос по математике:

известно в прямоугольнике длины всех сторон 5 см.можно ли утверждать что этот прямоугольник является квадратом

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 2

Да, потому что четырехугольник, у которого все стороны равны (5 см.) называется квадратом!)

Можно,т.к. у квадрата все стороны равны 🙂

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадратОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Видео:Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать

Математика 5 класс (Урок№29 - Четырёхугольники.)

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадратНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадратСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Ромб – это параллелограмм, у которого все стороны равны.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Известно что в четырехугольнике длины всех сторон равны можно ли утверждать что это квадрат

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

💥 Видео

Что важнее площадь или периметр?Скачать

Что важнее площадь или периметр?

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Как найти периметр данной фигуры? Решение за одну минуту!Скачать

Как найти периметр данной фигуры? Решение за одну минуту!

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

ОГЭ/База Все прототипы задач на четырехугольникиСкачать

ОГЭ/База Все прототипы задач на четырехугольники

Площади фигур. Сохраняй и запоминай!#shortsСкачать

Площади фигур. Сохраняй и запоминай!#shorts

Урок. Как найти длины сторон прямоугольника, по его периметру. Математика 2 класс. #учусьсамСкачать

Урок. Как найти длины сторон прямоугольника, по его периметру. Математика  2 класс. #учусьсам

Площадь ромба. Легче понять...Скачать

Площадь ромба. Легче понять...

Периметр прямоугольника. Как найти периметр прямоугольника?Скачать

Периметр прямоугольника. Как найти периметр прямоугольника?

№ 5.6. Периметр и площадь квадрата (дополнение)Скачать

№ 5.6. Периметр и площадь квадрата (дополнение)

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Площадь прямоугольника. Как найти площадь прямоугольника?Скачать

Площадь прямоугольника. Как найти площадь прямоугольника?

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика
Поделиться или сохранить к себе: