Гомотетия переводит окружность в окружность

Гомотетия, свойства гомотетии

Правило
Гомотетия переводит окружность в окружность

Гомотетия с коэффициентом k > 0 и центром в точке О — преобразование фигуры F в фигуру F1, при котором каждая ее точка X переходит в точку X1, такую, что вектор OX1 = k • OX.

Видео:Преобразование подобия. Гомотетия.Скачать

Преобразование подобия.  Гомотетия.

Свойства гомотетии

Свойства
1. Гомотетия является преобразованием подобия.

2. Гомотетия переводит прямую в прямую, отрезок — в отрезок.

3. Гомотетия (k > 0) переводит луч в сонаправленный луч.

4. Гомотетия сохраняет углы.

5. При k ? 1 гомотетия переводит прямую, не проходящую через центр гомотетии О, в параллельную прямую, отрезок — в параллельный отрезок. Прямые, проходящие через центр гомотетии, отображаются на себя.

6. Гомотетия переводит окружность в окружность.

7. Преобразование. обратное гомотетии с коэффициентом k ? 0, есть гомотетия с тем же центром гомотетии О и коэффициентом гомотетии 1 k .

8. Композиции двух гомотетий с общим коэффициентом О и коэффициентами k1 и k2 есть гомотетия с тем же центром О и коэффициентом k = k1 • k2.

Видео:ГомотетияСкачать

Гомотетия

Гомотетия переводит окружность в окружность

Документальные учебные фильмы. Серия «Геометрия».

Преобразование плоскости называется преобразованием подобия или просто подобием, если существует такое число , что для любых двух точек А и В и их образов А’ и В’ выполняется равенство . Число называется коэффициентом подобия.
При =1 преобразование подобия сохраняет расстояния, т. е. является движением. Следовательно, движение — частный случай преобразования подобия. Рассмотрим пример преобразования подобия, отличного от движения.
Зададим точку М0 и вещественное число . Каждой точке М плоскости поставим в соответствие точку М’ так, чтобы

Такое отображение является преобразованием плоскости и называется гомотетией. Точка М0 называется центром гомотетии, а число m — коэффициентом гомотетии. Докажем, что гомотетия — преобразование подобия. Действительно, пусть М1, М2 — произвольные точки плоскости, а и — их образы. Из равенства (1) получаем: , поэтому

Отсюда получаем: . Таким образом, гомотетия с коэффициентом m является преобразованием подобия с коэффициентом подобия .
При m = 1 из равенства (1) получаем: . Отсюда следует, что любая точка М плоскости совпадает с ее образом, т. е. гомотетия с коэффициентом m = 1 является тождественным преобразованием. При m = — 1 из равенства (1) получаем, что гомотетия — центральная симметрия. В остальных случаях (т. е. когда ) гомотетия — преобразование подобия, отличное от движения, т. е. преобразование плоскости, не сохраняющее расстояния между точками.

Выберем ортонормированный репер (О, Е1, E2) так, чтобы точка О совпала с центром гомотетии. Если М (х, у) —произвольная точка плоскости, а точка M′ (х’, у’) — ее образ, то из формулы (1) получаем аналитическое выражение гомотетии:
. (3)

Рассмотрим простейшие свойства гомотетии.

1) Гомотетия с коэффициентом переводит прямую, не проходящую через центр гомотетии, в параллельную ей прямую, а прямую, проходящую через центр гомотетии, — в себя.

□ Пусть Ах+Ву+С = 0 — уравнение данной прямой . Подставив сюда значения х, у из (3), получаем уравнение образа этой прямой: Ах’+By’+Сm = 0. Этим уравнением определяется прямая. Если С ≠ 0, то || , а если С = 0, то и совпадают.

2) Гомотетия сохраняет простое отношение трех точек.

□ Пусть А, В и С — три точки прямой, а А′, В’ и С’ — их образы, и . По определению простого отношения трех точек имеем: . По формуле (2) получаем: , где m — коэффициент гомотетии. Следовательно, . Таким образом, , т. е. (АВ, С) = (А’В’, С’).

Из этих свойств следует, что гомотетия переводит отрезок в отрезок, луч в луч и полуплоскость в полуплоскость.

3) Гомотетия переводит угол в равный ему угол.

□ Пусть ВАС — данный угол, а В′ А′ С’ — образы точек В, А и С. По формуле (2) получаем:

Отсюда следует, что

4) Гомотетия сохраняет ориентацию плоскости.

□ Пусть (А, В, С) — произвольный репер, а (А′, В’, С’) — его образ. Используя формулы (4), получаем: . Итак, в гомотетии любой репер и его образ ориентированы одинаково, т. е. гомотетия сохраняет ориентацию плоскости.

Нетрудно доказать, что если и — преобразования подобия с коэффициентами и , то — преобразование подобия с коэффициентом . Действительно, является преобразованием плоскости. Докажем, что для любых двух точек А и В и их образов A’ = ( ) (А), B’ = ( ) (В) выполняется равенство A’B’= AB. Если А1= (А), B1=( B), то А’ = (А1), B’ = (B1). По определению подобия А1В1 = АВ, А’В’ = A1B1, поэтому А’В’ = AB.

Теорема 1. Пусть — преобразование подобия с коэффициентом , a h — гомотетия с тем же коэффициентом и с центром в произвольной точке М0. Тогда существует одно и только одно движение такое, что

Оно является преобразованием подобия с коэффициентом , т.е. движением. Из равенства (6) получаем: , или . Таким образом, существует движение , удовлетворяющая условия (5).

Пусть теперь — произвольное движение, удовлетворяющее равенству . Отсюда получаем: . Учитывая равенство (6), мы приходим к выводу, что = .

Гомотетия обладает всеми свойствами 1° — 8° движений. Доказанная теорема позволяет заключить, что и преобразование подобия обладает теми же свойствами. Следовательно, имеет место утверждение: преобразование подобия прямую переводит в прямую, параллельные прямые — в параллельные прямые, сохраняет простое отношение трех точек, полуплоскость переводит в полуплоскость, отрезок — в отрезок, луч — в луч. Преобразование подобия угол переводит в равный ему угол, а перпендикулярные прямые — в перпендикулярные прямые.
Итак, доказано, что любое преобразование подобия можно представить в виде (5): , где — движение, a — гомотетия. Так как сохраняет ориентацию плоскости, т. е. любой репер переводит в репер той же ориентации, то если сохраняет ориентацию плоскости, то, очевидно, и сохраняет ориентацию плоскости, а если меняет ориентацию плоскости, то и меняет ориентацию плоскости. Таким образом, любое преобразование подобия либо сохраняет ориентацию плоскости, либо меняет ее ориентацию. В первом случае оно называется преобразованием подобия первого рода, а во втором случае — преобразованием подобия второго рода.

Пусть — преобразование подобия коэффициентом . Выберем прямоугольную систему координат и найдем аналитическое выражение преобразования в системе . Для этого рассмотрим гомотетию с центром О и коэффициентом и воспользуемся теоремой 1. Пусть — движение, удовлетворяющее равенству (5). Запишем в системе аналитические выражения преобразований и :

Таким образом, если М (х, у) — произвольная точка плоскости, а М'(х′, у’) — ее образ в преобразовании то

где =1, если — преобразование подобия первого рода, и = — 1, если — преобразование подобия второго рода. Используя формулы (7), докажем теорему.

Теорема 2. Любое преобразование подобия, отличное от движения, имеет одну и только одну неподвижную точку.

□ Пусть равенства (7) — аналитическое выражение данного преобразования подобия. Точка М (х, у) является неподвижной точкой этого преобразования тогда и только тогда, когда

Рассмотрим определитель этой системы. Если =1, то , а если = — 1, то . Таким образом, при для любого имеем: . Отсюда следует утверждение теоремы.
Следствие. Любое преобразование подобия, имеющее более чем одну неподвижную точку или не имеющее неподвижных точек, является движением.
Используя доказанную теорему и ее следствие, можно провести классификацию преобразований подобия в зависимости от наличия неподвижных точек и инвариантных прямых.
А. Классификация преобразований подобия первого рода. Пусть f — преобразование подобия первого рода. Если f имеет более чем одну неподвижную точку или не имеет неподвижных точек, то по следствию предыдущей теоремы оно является движением, поэтому — параллельный перенос.
Остается рассмотреть случай, когда преобразование с коэффициентом имеет только одну неподвижную точку, которую обозначим через О. Пусть — гомотетия с коэффициентом и центром О. По теореме 1 существует такое движение , что . Так как и — подобия первого рода, то — движение первого рода, причем . Таким образом, — поворот вокруг точки О. Возможны три случая.

1) — тождественное преобразование. В этом случае , т. е. — гомотетия с положительным коэффициентом , .

2) — центральная симметрия. Ясно, что в этом случае — гомотетия с отрицательным коэффициентом .

3) — вращение на угол ; . В этом случае является произведением гомотетии на вращение . Оно называется центрально-подобным вращением.

Таким образом, преобразование подобия, имеющее только одну неподвижную точку, является либо гомотетией с коэффициентом , либо центрально-подобным вращением.

В. Классификация преобразований подобия второго рода. Пусть — преобразование подобия второго рода. Если имеет более чем одну неподвижную точку или не имеет неподвижных точек, то по аналогии со случаем А мы приходим к выводу, что преобразование является либо осевой симметрией, либо скользящей симметрией.
Рассмотрим случай, когда преобразование подобия с коэффициентом имеет только одну неподвижную точку О. Ясно, что , так как в противном случае — движение второго рода, но оно не может иметь только одну неподвижную точку. Пусть — гомотетия с коэффициентом к и центром О. По теореме 1 , где — движение второго рода. Точка О — неподвижная точка движения , поэтому — осевая симметрия. В этом случае называется центрально-подобной симметрией.

Итак, существует шесть типов преобразования подобия, которые приведены в следующей таблице:

Преобразование пространства называется преобразованием подобия или просто подобием, если существует такое число , что для любых двух точек А и В и их образов А’ и В’ выполняется равенство . Число называется коэффициентом подобия.
При преобразование подобия сохраняет расстояния, т. е. является движением. Следовательно, движение — частный случай подобия. Примером преобразования подобия, отличного от движения, является гомотетия, которая в пространстве вводится точно так же, как и в плоскости. Зададим точку М0 и вещественное число . Каждой точке М поставим в соответствие точку М’ так, чтобы

Это отображение называется гомотетией с центром Мо и коэффициентом m. Для двух точек M1 и М2 и их образов и из формулы (1) получаем:

Отсюда следует, что . Таким образом, гомотетия с коэффициентом m является преобразованием подобия с коэффициентом .
Выберем ортонормированный репер (О, Е1, Е2, Е3) так, чтобы точка О совпала с центром гомотетии. Если М (х, у, z)—произвольная точка пространства, а точка М’ (х′, у′, z′) — ее образ, то из формулы (1) получаем аналитическое выражение гомотетии в пространстве:
(3)

Пользуясь формулами (3), можно доказать, что гомотетия переводит плоскость (прямую), не проходящую через центр гомотетии, в параллельную плоскость (прямую), а плоскость (прямую), проходящую через центр гомотетии,— в себя. Аналогично, пользуясь формулой (2), убеждаемся в том, что гомотетия сохраняет простое отношение трех точек. Отсюда следует, что гомотетия переводит отрезок в отрезок, луч — в луч, полуплоскость — в полуплоскость и полупространство — в полупространство. Из формулы (2) следует также, что гомотетия переводит угол в равный ему угол.
Докажем, что гомотетия с коэффициентом m сохраняет ориентацию пространства, если , и меняет его ориентацию, если . Действительно, пусть (А, В, С, D) — произвольный репер, а (А′, В’, С’, D’) — его образ. По формуле (2) получаем: , , поэтому

Отсюда и следует сформулированное выше утверждение.

Теорема 1, сформулированная и доказанная (см. выше), полностью переносится на пространство, т. е. любое преобразование подобия пространства с коэффициентом является произведением гомотетии с тем же коэффициентом и произвольным центром на некоторое движение. Отсюда следует, что подобие пространства переводит плоскость (прямую) в плоскость (прямую), параллельные плоскости (прямые) —в параллельные плоскости (прямые). Подобие сохраняет простое отношение трех точек, поэтому оно переводит отрезок в отрезок, луч — в луч, полуплоскость — в полуплоскость, полупространство — в полупространство. Подобие переводит угол в равный ему угол, взаимно перпендикулярные прямые (плоскости) — во взаимно перпендикулярные прямые (плоскости).
Точно так же, как и на плоскости, можно доказать, что любое преобразование подобия либо сохраняет ориентацию пространства, либо меняет ее. В первом случае оно называется преобразованием подобия первого рода, а во втором случае — преобразованием подобия второго рода. Таким образом, гомотетия с положительным коэффициентом является преобразованием подобия первого рода, а гомотетия с отрицательным коэффициентом (в частности, центральная симметрия, ) — преобразованием подобия второго рода.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Докажите, что при гомотетии окружность переходит в окружность.

Пусть O1 — образ центра O окружности S радиуса R при гомотетии с центром в точке Q и коэффициентом k. Пусть k > 0. Если M — произвольная точка этой окружности, а M1 — её образ при рассматриваемой гомотетии, то

Следовательно, точка M1 лежит на окружности S1 с центром O1 и радиусом kR.

Ясно также, что любая точка окружности S1 является образом некоторой точки окружности S при этой гомотетии (достаточно рассмотреть образ этой точки при обратной гомотетии, т.е. при гомотетии с центром Q и коэффициентом Гомотетия переводит окружность в окружность).

Аналогично для k 4 года назад Комментировать

📹 Видео

11 класс, 13 урок, Преобразование подобияСкачать

11 класс, 13 урок, Преобразование подобия

Гомотетия. Коэффициент гомотетии. Центр гомотетии. Гомотетичные фигуры. Геометрия 8-9 классСкачать

Гомотетия. Коэффициент гомотетии. Центр гомотетии. Гомотетичные фигуры. Геометрия 8-9 класс

9 класс. Геометрия. Гомотетия.Скачать

9 класс. Геометрия. Гомотетия.

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Геометрия. 9 класс. Гомотетия и ее свойства /26.11.2020/Скачать

Геометрия. 9 класс. Гомотетия и ее свойства /26.11.2020/

7 класс, 21 урок, ОкружностьСкачать

7 класс, 21 урок, Окружность

Гомотетия Геометрия, 1965Скачать

Гомотетия Геометрия, 1965

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Поворотная гомотетия | Олимпиадная математикаСкачать

Поворотная гомотетия | Олимпиадная математика

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

гомотетияСкачать

гомотетия

Как решать задачи в одну строчку?Скачать

Как решать задачи в одну строчку?

Инверсия | Олимпиадная математикаСкачать

Инверсия | Олимпиадная математика

Преобразование подобия. Геометрия 9классСкачать

Преобразование подобия. Геометрия 9класс

Преобразования плоскости. Гомотетия 2Скачать

Преобразования плоскости. Гомотетия 2

9 класс. Геометрия. Геометрические преобразования. Движение. Симметрия. Гомотетия. Подобие. Урок #8Скачать

9 класс. Геометрия. Геометрические преобразования. Движение. Симметрия. Гомотетия. Подобие. Урок #8

Решение задач с использованием гомотетииСкачать

Решение задач с использованием гомотетии
Поделиться или сохранить к себе: