Где на окружности точка 5п 2

Как обозначать числа с пи на числовой окружности?

Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом читать ! Если вы, конечно, собираетесь находить точки на числовой окружности.

Содержание
  1. Обозначаем числа (2π), (π), (frac), (-frac), (frac)
  2. Обозначаем числа (frac), (frac), (frac)
  3. Обозначаем числа (frac), (-frac), (frac)
  4. Обозначаем числа (10π), (-3π), (frac) ,(frac), (-frac), (-frac)
  5. Числам с разницей в (2πn), где (n∈Z) (то есть (n) — любое целое число) соответствует одна и та же точка.
  6. Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).
  7. Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).
  8. Промежуток 5п 2 п на окружности
  9. Тригонометрический круг: вся тригонометрия на одном рисунке
  10. А теперь подробно о тригонометрическом круге:
  11. Промежуток от -5 ПИ на 2 до минус Пи.
  12. Как обозначать числа с пи на числовой окружности?
  13. Обозначаем числа (2π), (π), (frac ), (-frac ), (frac )
  14. Обозначаем числа (frac ), (frac ), (frac )
  15. Обозначаем числа (frac ), (-frac ), (frac )
  16. Обозначаем числа (10π), (-3π), (frac ) ,(frac ), (-frac ), (-frac )
  17. Числам с разницей в (2πn), где (n∈Z) (то есть (n) — любое целое число) соответствует одна и та же точка.
  18. Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).
  19. Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).
  20. Где на окружности точка 5п 2
  21. Как написать хороший ответ?
  22. 📸 Видео

Видео:№964. На окружности, заданной уравнением (x-3)2 + + (y-5)2 = 25, найдите точки: а) с абсциссой 3;Скачать

№964. На окружности, заданной уравнением (x-3)2 + + (y-5)2 = 25, найдите точки: а) с абсциссой 3;

Обозначаем числа (2π), (π), (frac), (-frac), (frac)

Как вы знаете из прошлой статьи, радиус числовой окружности равен (1). Значит, длина окружности равняется (2π) (вычислили по формуле (l=2πR)). С учетом этого отметим (2π) на числовой окружности. Чтобы отметить это число нужно пройти от (0) по числовой окружности расстояние равно (2π) в положительном направлении, а так как длина окружности (2π), то получается, что мы сделаем полный оборот. То есть, числу (2π) и (0) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки — это нормально для числовой окружности.

Где на окружности точка 5п 2

Теперь обозначим на числовой окружности число (π). (π) – это половина от (2π). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от (0) в положительном направлении половину окружности.

Где на окружности точка 5п 2

Отметим точку (frac) . (frac) – это половина от (π), следовательно чтобы отметить это число, нужно от (0) пройти в положительном направлении расстояние равное половине (π), то есть четверть окружности.

Где на окружности точка 5п 2

Обозначим на окружности точки (-) (frac) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.

Где на окружности точка 5п 2

Нанесем (-π). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.

Где на окружности точка 5п 2

Теперь рассмотрим пример посложнее. Отметим на окружности число (frac) . Для этого дробь (frac) переведем в смешанный вид (frac) (=1) (frac) , т.е. (frac) (=π+) (frac) . Значит, нужно от (0) в положительную сторону пройти расстояние в пол окружности и еще в четверть.

Где на окружности точка 5п 2

Задание 1. Отметьте на числовой окружности точки (-2π),(-) (frac) .

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Обозначаем числа (frac), (frac), (frac)

Выше мы нашли значения в точках пересечения числовой окружности с осями (x) и (y). Теперь определим положение промежуточных точек. Для начала нанесем точки (frac) , (frac) и (frac) .
(frac) – это половина от (frac) (то есть, (frac) (=) (frac) (:2)) , поэтому расстояние (frac) – это половина четверти окружности.

Где на окружности точка 5п 2

(frac) – это треть от (π) (иначе говоря, (frac) (=π:3)), поэтому расстояние (frac) – это треть от полукруга.

Где на окружности точка 5п 2

(frac) – это половина (frac) (ведь (frac) (=) (frac) (:2)) поэтому расстояние (frac) – это половина от расстояния (frac) .

Где на окружности точка 5п 2

Вот так они расположены друг относительно друга:

Где на окружности точка 5п 2

Замечание: Расположение точек со значением (0), (frac) ,(π), (frac) , (frac) , (frac) , (frac) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.

Разные расстояние на окружности наглядно:

Где на окружности точка 5п 2Где на окружности точка 5п 2

Где на окружности точка 5п 2 Где на окружности точка 5п 2

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Обозначаем числа (frac), (-frac), (frac)

Обозначим на окружности точку (frac) , для этого выполним следующие преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=π+) (frac) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние (π), а потом еще (frac) .

Где на окружности точка 5п 2

Отметим на окружности точку (-) (frac) . Преобразовываем: (-) (frac) (=-) (frac) (-) (frac) (=-π-) (frac) . Значит надо от (0) пройти в отрицательную сторону расстояние (π) и еще (frac) .

Где на окружности точка 5п 2

Нанесем точку (frac) , для этого преобразуем (frac) (=) (frac) (=) (frac) (-) (frac) (=2π-) (frac) . Значит, чтобы поставить точку со значением (frac) , надо от точки со значением (2π) пройти в отрицательную сторону расстояние (frac) .

Где на окружности точка 5п 2

Видео:1 2 2 деление окружности на 5 равных частейСкачать

1 2 2  деление окружности на 5 равных частей

Обозначаем числа (10π), (-3π), (frac) ,(frac), (-frac), (-frac)

Запишем (10π) в виде (5 cdot 2π). Вспоминаем, что (2π) – это расстояние равное длине окружности, поэтому чтобы отметить точку (10π), нужно от нуля пройти расстояние равное (5) окружностям. Нетрудно догадаться, что мы окажемся снова в точке (0), просто сделаем пять оборотов.

Где на окружности точка 5п 2

Из этого примера можно сделать вывод:

Числам с разницей в (2πn), где (n∈Z) (то есть (n) — любое целое число) соответствует одна и та же точка.

То есть, чтобы поставить число со значением больше (2π) (или меньше (-2π)), надо выделить из него целое четное количество (π) ((2π), (8π), (-10π)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).

Теперь нанесем на окружность (-3π). (-3π=-π-2π), значит (-3π) и (–π) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в (-2π)).

Где на окружности точка 5п 2

Кстати, там же будут находиться все нечетные (π).

Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).

Сейчас обозначим число (frac) . Как обычно, преобразовываем: (frac) (=) (frac) (+) (frac) (=3π+) (frac) (=2π+π+) (frac) . Два пи – отбрасываем, и получается что, для обозначения числа (frac) нужно от нуля в положительную сторону пройти расстояние равное (π+) (frac) (т.е. половину окружности и еще четверть).

Где на окружности точка 5п 2

Отметим (frac) . Вновь преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=5π+) (frac) (=4π+π+) (frac) . Ясно, что от нуля надо пройти расстояние равное (π+) (frac) – и мы найдем место точки (frac) .

Где на окружности точка 5п 2

Нанесем на окружность число (-) (frac) .
(-) (frac) (= -) (frac) (-) (frac) (=-10π-) (frac) . Значит, место (-) (frac) совпадает с местом числа (-) (frac) .

Где на окружности точка 5п 2

Обозначим (-) (frac) .
(-) (frac) (=-) (frac) (+) (frac) (=-5π+) (frac) (=-4π-π+) (frac) . Для обозначение (-) (frac) , на числовой окружности надо от точки со значением (–π) пройти в положительную сторону (frac) .

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Промежуток 5п 2 п на окружности

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Где на окружности точка 5п 2

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Окружность. Круг. 5 класс.Скачать

    Окружность. Круг. 5 класс.

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:5 класс, 22 урок, Окружность и кругСкачать

    5 класс, 22 урок, Окружность и круг

    Промежуток от -5 ПИ на 2 до минус Пи.

    Промежуток от -5 * PI / 2 до — PI
    это 1, 2 и 3 четверти или только третья четверть?

    Где на окружности точка 5п 2

    Это, милок, все четверти, кроме второй.. . Первая, четвертая и третья.

    Где на окружности точка 5п 2

    — 5 пи /2 = — 2 и 1/2 пи
    2 — откинь, останется -1/2
    значит 4-я и 3-я
    ———————————————————
    лично я так в свои 51 год думаю

    Видео:Деление окружности на 5 частейСкачать

    Деление окружности на 5 частей

    Как обозначать числа с пи на числовой окружности?

    Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом читать ! Если вы, конечно, собираетесь находить точки на числовой окружности.

    Видео:Бондарев А.А. - 5. Доклад "О некоторых классах обеспечения неустойчивости"Скачать

    Бондарев А.А. - 5. Доклад "О некоторых классах обеспечения неустойчивости"

    Обозначаем числа (2π), (π), (frac ), (-frac ), (frac )

    Как вы знаете из прошлой статьи, радиус числовой окружности равен (1). Значит, длина окружности равняется (2π) (вычислили по формуле (l=2πR)). С учетом этого отметим (2π) на числовой окружности. Чтобы отметить это число нужно пройти от (0) по числовой окружности расстояние равно (2π) в положительном направлении, а так как длина окружности (2π), то получается, что мы сделаем полный оборот. То есть, числу (2π) и (0) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки — это нормально для числовой окружности.

    Где на окружности точка 5п 2

    Теперь обозначим на числовой окружности число (π). (π) – это половина от (2π). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от (0) в положительном направлении половину окружности.

    Где на окружности точка 5п 2

    Отметим точку (frac ) . (frac ) – это половина от (π), следовательно чтобы отметить это число, нужно от (0) пройти в положительном направлении расстояние равное половине (π), то есть четверть окружности.

    Где на окружности точка 5п 2

    Обозначим на окружности точки (-) (frac ) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.

    Где на окружности точка 5п 2

    Нанесем (-π). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.

    Где на окружности точка 5п 2

    Теперь рассмотрим пример посложнее. Отметим на окружности число (frac ) . Для этого дробь (frac ) переведем в смешанный вид (frac ) (=1) (frac ) , т.е. (frac ) (=π+) (frac ) . Значит, нужно от (0) в положительную сторону пройти расстояние в пол окружности и еще в четверть.

    Где на окружности точка 5п 2

    Задание 1. Отметьте на числовой окружности точки (-2π),(-) (frac ) .

    Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

    Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

    Обозначаем числа (frac ), (frac ), (frac )

    Выше мы нашли значения в точках пересечения числовой окружности с осями (x) и (y). Теперь определим положение промежуточных точек. Для начала нанесем точки (frac ) , (frac ) и (frac ) .
    (frac ) – это половина от (frac ) (то есть, (frac ) (=) (frac ) (:2)) , поэтому расстояние (frac ) – это половина четверти окружности.

    Где на окружности точка 5п 2

    (frac ) – это треть от (π) (иначе говоря, (frac ) (=π:3)), поэтому расстояние (frac ) – это треть от полукруга.

    Где на окружности точка 5п 2

    (frac ) – это половина (frac ) (ведь (frac ) (=) (frac ) (:2)) поэтому расстояние (frac ) – это половина от расстояния (frac ) .

    Где на окружности точка 5п 2

    Вот так они расположены друг относительно друга:

    Где на окружности точка 5п 2

    Замечание: Расположение точек со значением (0), (frac ) ,(π), (frac ) , (frac ) , (frac ) , (frac ) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.

    Разные расстояние на окружности наглядно:

    Где на окружности точка 5п 2Где на окружности точка 5п 2

    Где на окружности точка 5п 2Где на окружности точка 5п 2

    Видео:Математика 5 класс (Урок№26 - Окружность и круг. Сфера и шар.)Скачать

    Математика 5 класс (Урок№26 - Окружность и круг. Сфера и шар.)

    Обозначаем числа (frac ), (-frac ), (frac )

    Обозначим на окружности точку (frac ) , для этого выполним следующие преобразования: (frac ) (=) (frac ) (=) (frac ) (+) (frac ) (=π+) (frac ) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние (π), а потом еще (frac ) .

    Где на окружности точка 5п 2

    Отметим на окружности точку (-) (frac ) . Преобразовываем: (-) (frac ) (=-) (frac ) (-) (frac ) (=-π-) (frac ) . Значит надо от (0) пройти в отрицательную сторону расстояние (π) и еще (frac ) .

    Где на окружности точка 5п 2

    Нанесем точку (frac ) , для этого преобразуем (frac ) (=) (frac ) (=) (frac ) (-) (frac ) (=2π-) (frac ) . Значит, чтобы поставить точку со значением (frac ) , надо от точки со значением (2π) пройти в отрицательную сторону расстояние (frac ) .

    Где на окружности точка 5п 2

    Видео:Точки на числовой окружностиСкачать

    Точки на числовой окружности

    Обозначаем числа (10π), (-3π), (frac ) ,(frac ), (-frac ), (-frac )

    Запишем (10π) в виде (5 cdot 2π). Вспоминаем, что (2π) – это расстояние равное длине окружности, поэтому чтобы отметить точку (10π), нужно от нуля пройти расстояние равное (5) окружностям. Нетрудно догадаться, что мы окажемся снова в точке (0), просто сделаем пять оборотов.

    Где на окружности точка 5п 2

    Из этого примера можно сделать вывод:

    Числам с разницей в (2πn), где (n∈Z) (то есть (n) — любое целое число) соответствует одна и та же точка.

    То есть, чтобы поставить число со значением больше (2π) (или меньше (-2π)), надо выделить из него целое четное количество (π) ((2π), (8π), (-10π)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

    Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).

    Теперь нанесем на окружность (-3π). (-3π=-π-2π), значит (-3π) и (–π) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в (-2π)).

    Где на окружности точка 5п 2

    Кстати, там же будут находиться все нечетные (π).

    Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).

    Сейчас обозначим число (frac ) . Как обычно, преобразовываем: (frac ) (=) (frac ) (+) (frac ) (=3π+) (frac ) (=2π+π+) (frac ) . Два пи – отбрасываем, и получается что, для обозначения числа (frac ) нужно от нуля в положительную сторону пройти расстояние равное (π+) (frac ) (т.е. половину окружности и еще четверть).

    Где на окружности точка 5п 2

    Отметим (frac ) . Вновь преобразования: (frac ) (=) (frac ) (=) (frac ) (+) (frac ) (=5π+) (frac ) (=4π+π+) (frac ) . Ясно, что от нуля надо пройти расстояние равное (π+) (frac ) – и мы найдем место точки (frac ) .

    Где на окружности точка 5п 2

    Нанесем на окружность число (-) (frac ) .
    (-) (frac ) (= -) (frac ) (-) (frac ) (=-10π-) (frac ) . Значит, место (-) (frac ) совпадает с местом числа (-) (frac ) .

    Где на окружности точка 5п 2

    Обозначим (-) (frac ) .
    (-) (frac ) (=-) (frac ) (+) (frac ) (=-5π+) (frac ) (=-4π-π+) (frac ) . Для обозначение (-) (frac ) , на числовой окружности надо от точки со значением (–π) пройти в положительную сторону (frac ) .

    Видео:Длина окружности. Математика 6 класс.Скачать

    Длина окружности. Математика 6 класс.

    Где на окружности точка 5п 2

    Вопрос по алгебре:

    Где находятся точки 5П/2 и 7П/2 на числовой окружности?

    Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

    Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

    Ответы и объяснения 2

    5пи/2 модно представить как (4пи+пи)/2=2пи+ пи/2. 2пи отбрасываем как полную окружность и остается угол пи/2, т.е. в 90 градусов. Это точка с коопдинатами (0;1).
    тоже самое со вторым. (6пи+пи)/2=2пи+пи+пи/2, отбрасываем 2пи и оствется угол пи+пи/2, т. е. 270 градусов. на единичной окружности получаем точку с координатами (0;-1)

    5П/2 — 90 градусов7П/2 — 270 градусов

    Знаете ответ? Поделитесь им!

    Как написать хороший ответ?

    Чтобы добавить хороший ответ необходимо:

    • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
    • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
    • Писать без грамматических, орфографических и пунктуационных ошибок.

    Этого делать не стоит:

    • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
    • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
    • Использовать мат — это неуважительно по отношению к пользователям;
    • Писать в ВЕРХНЕМ РЕГИСТРЕ.
    Есть сомнения?

    Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Алгебра.

    Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

    Алгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики.

    📸 Видео

    Вычисление значений тригонометрических функцийСкачать

    Вычисление значений тригонометрических функций

    Длина окружности. Площадь круга. 6 класс.Скачать

    Длина окружности. Площадь круга. 6 класс.

    №968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

    №968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).

    №961. Окружность задана уравнением (x + 5)2 + (y-1)2= 16. Не пользуясь чертежомСкачать

    №961. Окружность задана уравнением (x + 5)2 + (y-1)2= 16. Не пользуясь чертежом

    Окружность. Как найти Радиус и ДиаметрСкачать

    Окружность. Как найти Радиус и Диаметр

    Окружность. Круг. Практическая часть - решение задачи. 5 класс.Скачать

    Окружность. Круг. Практическая часть - решение задачи. 5 класс.
    Поделиться или сохранить к себе: