Функция от вектора маткад

Функция от вектора маткад

Mathcad содержит функции для обычных в линейной алгебре действий с массивами. Эти функции предназначены для использования с векторами и матрицами. Если явно не указано, что функция определена для векторного или матричного аргумента, не следует в ней использовать массивы как аргумент. Обратите внимание, что операторы, которые ожидают в качестве аргумента вектор, всегда ожидают вектор-столбец, а не вектор-строку. Чтобы заменить вектор-строку на вектор-столбец, используйте оператор транспонирования [Ctrl]1.

Если Вы используете Mathcad PLUS, Вы будете также иметь несколько дополнительных функций, определенных для векторов. Эти функции скорее предназначены для анализа данных, чем для действий с матрицами. Они обсуждены в Главе “Встроенные функции”.

Следующие таблицы перечисляют векторные и матричные функции Mathcad. В этих таблицах

  • A и B — массивы (векторы или матрицы).
  • v — вектор.
  • M и N — квадратные матрицы.
  • z — скалярное выражение.
  • Имена, начинающиеся с букв m, n, i или j — целые числа.

Размеры и диапазон значений массива

В Mathcad есть несколько функций, которые возвращают информацию относительно размеров массива и диапазона его элементов. Рисунок 10 показывает, как эти функции используются.

Имя функцииВозвращается.
rows(A)Число строк в массиве A. Если А — скаляр, возвращается 0.
cols(A)Число столбцов в массиве A. Если A скаляр, возвращается 0.
length(v)Число элементов в векторе v.
last(v)Индекс последнего элемента в векторе v.
max(A)Самый большой элемент в массиве A. Если A имеет комплексные элементы, возвращает наибольшую вещественную часть плюс i, умноженную на наибольшую мнимую часть.
min(A)Самый маленький элемент в массиве A. Если A имеет комплексные элементы, возвращает наименьшую вещественную часть плюс i, умноженную на наименьшую мнимую часть.

Функция от вектора маткад

Рисунок 10: Векторные и матричные функции для нахождения размера массива и получения информации относительно диапазона элементов.

Специальные типы матриц

Можно использовать следующие функции, чтобы произвести от массива или скаляра матрицу специального типа или формы. Функции rref, diag и geninv доступны только в Mathcad PLUS.

Имя функцииВозвращается.
identity(n)n x n единичная матрица (матрица, все диагональные элементы которой равны 1, а все остальные элементы равны 0).
Re(A)Массив, состоящий из элементов, которые являются вещественными частями элементов A.
Im(A)Массив, состоящий из элементов, которые являются мнимыми частями элементов A.
Е diag(v)Диагональная матрица, содержащая на диагонали элементы v.
Е geninv(A)Левая обратная к A матрица L такая, что LФункция от вектора маткадA = I, где I — единичная матрица, имеющая то же самое число столбцов, что и A. Матрица А — m x n вещественная матрица, где m>=n.
Е rref(A)Ступенчатая форма матрицы A.

Функция от вектора маткад

Рисунок 11: Функции для преобразования массивов. Обратите внимание, что функции diag и rref являются доступными только в Mathcad PLUS.

Специальные характеристики матрицы

Можно использовать функции из следующей таблицы, чтобы найти след, ранг, нормы и числа обусловленности матрицы. Кроме tr, все эти функции доступны только в Mathcad PLUS.

Имя функцииВозвращается.
tr(M)Сумма диагональных элементов, называемая следом M.
Е rank(A)Ранг вещественной матрицы A.
Е norm1(M)L1 норма матрицы M.
Е norm2(M)L2 норма матрицы M.
Е norme(M)Евклидова норма матрицы M.
Е normi(M)Равномерная норма матрицы M.
Е cond1(M)Число обусловленности матрицы M, основанное на L1 норме.
Е cond2(M)Число обусловленности матрицы M, основанное на L2 норме.
Е conde(M)Число обусловленности матрицы M, основанное на евклидовой норме.
Е condi (M)Число обусловленности матрицы M, основанное на равномерной норме.

Формирование новых матриц из существующих

В Mathcad есть две функции для объединения матриц вместе — бок о бок, или одна над другой. В Mathcad также есть функция для извлечения подматрицы. Рисунки 12 и 13 показывают некоторые примеры.

Имя функцииВозвращается.
augment (A, B)Массив, сформированный расположением A и B бок о бок. Массивы A и B должны иметь одинаковое число строк.
stack (A, B)Массив, сформированный расположением A над B. Массивы A и B должны иметь одинаковое число столбцов.
submatrix (A, ir, jr, ic, jc)Субматрица, состоящая из всех элементов, содержащихся в строках с ir по jc и столбцах с ic по jc. Чтобы поддерживать порядок строк и-или столбцов, удостоверьтесь, что ir

Функция от вектора маткад

Рисунок 12: Объединение матриц функциями stack и augment.

Функция от вектора маткад

Рисунок 13: Извлечение субматрицы из матрицы при помощи функции submatrix.

Собственные значения и собственные векторы

В Mathcad существуют функции eigenval и eigenvec для нахождения собственных значений и собственных векторов матрицы. В Mathcad PLUS также есть функция eigenvecs для получения всех собственных векторов сразу. Если Вы используете Mathcad PLUS, Вы будете также иметь доступ к genvals и genvecs для нахождения обобщенных собственных значений и собственных векторов. Рисунок 14 показывает, как некоторые из этих функций используются.

Возвращается.

Имя функции
eigenvals (M)Вектор, содержащий собственные значения матрицы M.
eigenvec (M, z)Матрица, содержащая нормированный собственный вектор, соответствующий собственному значению z квадратной матрицы M.
Е eigenvecs (M)Матрица, содержащая нормированные собственные векторы, соответствующие собственным значениям квадратной матрицы M. n-ный столбец возвращенной матрицы — собственный вектор, соответствующий n-ному собственному значению, возвращенному eigenvals.
Е genvals (M,N)Вектор v собственных значений, каждое из которых удовлетворяет обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера. Вектор x — соответствующий собственный вектор.
Е genvecs (M,N)Матрица, содержащая нормализованные собственные векторы, соответствующие собственным значениям в v, векторе, возвращенном genvals. n-ный столбец этой матрицы — собственный вектор x, удовлетворяющий обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера.

Функция от вектора маткад

Рисунок 14: Нахождение собственных значений и собственных векторов.

Функция от вектора маткад

Рисунок 15: Использование eigenvecs для одновременного нахождения всех собственных векторов.

Если Вы используете Mathcad PLUS, Вы будете иметь доступ к некоторым дополнительным функциям для выполнения специальных разложений матрицы: QR, LU, Холесского, и по сингулярным базисам. Некоторые из этих функций возвращают две или три матрицы, соединенные вместе в одну большую матрицу. Используйте submatrix, чтобы извлечь эти две или три меньшие матрицы. Рисунок 16 показывает пример.

Имя функцииВозвращается.
Е cholesky(M)Нижняя треугольная матрица L такая, что LФункция от вектора маткадL T =M. Матрица M должна быть симметричной положительно определенной. Симметрия означает, что M=M T , положительная определённость — что x T Функция от вектора маткадMФункция от вектора маткадx>0 для любого вектора x Функция от вектора маткад0.
Е qr(A)Матрица, чьи первые n столбцов содержат ортогональную матрицу Q, а последующие столбцы содержат верхнюю треугольную матрицу R. Матрицы Q и R удовлетворяют равенству A=QФункция от вектора маткадR. Матрица A должна быть вещественной.
Е lu(M)Матрица, которая содержит три квадратные матрицы P, L и U, расположенные последовательно в указанном порядке и имеющие с M одинаковый размер. L и U являются соответственно нижней и верхней треугольными матрицами. Эти три матрицы удовлетворяют равенству PФункция от вектора маткадM=LФункция от вектора маткадU .
Е svd(A)Матрица, содержащая две расположенные друг над другом матрицы U и V. Сверху находится U — размера m x n, снизу V — размера n x n. Матрицы U и V удовлетворяют равенству A=UФункция от вектора маткадdiag(s)Функция от вектора маткадV T , где s — вектор, возвращенный svds(A). A должна быть вещественнозначной матрицей размера m x n, где m>=n.
Е svds(A)Вектор, содержащий сингулярные значения вещественнозначной матрицы размера m x n, где m>=n.

Функция от вектора маткад

Рисунок 16: Использование функции submatrix для извлечения результата из функции rq. Используйте submatrix, чтобы извлечь подобным образом результаты из функций lu и svd. Обратите внимание, что эти функции доступны только в Mathcad PLUS.

Решение линейной системы уравнений

Если Вы используете Mathcad PLUS, Вы сможете использовать функцию lsolve для решения линейной системы уравнений. Рисунок 17 показывает пример. Обратите внимание, что M не может быть ни вырожденной, ни почти вырожденной для использования с lsolve. Матрица называется вырожденной, если её детерминант равен нулю. Матрица почти вырождена, если у неё большое число обусловленности. Можно использовать одну из функций, описанных на странице 204, чтобы найти число обусловленности матрицы.

Возвращается.

Имя функции
Е lsolve (M, v)Вектор решения x такой, что MФункция от вектора маткадx=v.

Если Вы не используете Mathcad PLUS, Вы всё-таки можете решать систему линейных уравнений, используя обращение матрицы, как показано в нижнем правом углу Рисунка 9.

Функция от вектора маткад

Рисунок 17: Использование lsolve для решения системы из двух уравнений с двумя неизвестными.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Видео:Функции для работы с матрицами и векторами в MathCAD 14 (21/34)Скачать

Функции для работы с матрицами и векторами в MathCAD 14 (21/34)

Векторы и матрицы в MathCAD

Нижняя граница индексации в MathCAD определена системной переменной ORIGIN. По умолчанию ORIGIN=0. Значение переменной можно переопределить. Например, ORIGIN=1.

Векторы и матрицы в MathCAD можно задавать путем ввода их элементов. Для ввода индекса элемента массива используется символ – [.

Поэлементный ввод массива Х

Вводимые символыОтображаемые символы
X [ 1 Shift+: 5X1:=5
X [ 2 Shift+: 8X2:= 8
X [ 3 Shift+: 10X3:= 10

Поэлементный ввод матрицы А

Вводимые символыОтображаемые символы
A [ 1,1 Shift+: 0.1A11 := 0.1
A [ 1,2 Shift+: -2.5A12 := -2.5
A [ 2,1 Shift+: -1.0A21 := -1.0
A [ 2,2 Shift+: 5.2A22 := 5.2

Функция от вектора маткад

Для операций с матрицами и векторами предназначена панель Matrix, которая открывается щелчком по кнопке Функция от вектора маткадв панели математических инструментов.

Функция от вектора маткад

ПанельMatrix содержит следующие кнопки:

Функция от вектора маткад– определение размеров матрицы;

Функция от вектора маткад– ввод элемента массива Функция от вектора маткад;

Функция от вектора маткад– вычисление матрицы, обратной к данной Функция от вектора маткад;

Функция от вектора маткад– вычисление определителя матрицы Функция от вектора маткад;

Функция от вектора маткад– оператор векторизации (поэлементные операции с векторами и матрицами) Функция от вектора маткад;

Функция от вектора маткад– определение столбца матрицы Функция от вектора маткад;

Функция от вектора маткад– транспонирование матрицы Функция от вектора маткад;

Функция от вектора маткад– определение ранжированной переменной;

Функция от вектора маткад– вычисление скалярного произведения векторов;

Функция от вектора маткад– вычисление векторного произведения векторов;

Функция от вектора маткад– вычисление суммы компонент вектора.

Функция от вектора маткад– визуализация цифровой информации.

Действия, которые необходимо выполнить, чтобы ввести матрицу в рабочий документ при помощи кнопки Функция от вектора маткадпанели Matrix:

1. Ввести с клавиатуры имя матрицы и знак присваивания;

2. Щелчком по кнопке Функция от вектора маткадоткрыть окно диалога:

Функция от вектора маткад

3. Определить число строк (Rows) и число столбцов (Columns) будущей матрицы;

4. Закрыть окно диалога, щелкнув по кнопке OK;

5. Ввести элементы матрицы, установив курсор в поле ввода, которое появится справа от знака присваивания:

Функция от вектора маткад

Функция от вектора маткад

Функция от вектора маткад

Функция от вектора маткад

Функции определения матриц и операции с блоками матриц:

matrix(m,n,f) – создает и заполняет матрицу A=<aij> размерности m на n, каждый элемент которой aij равен значению функции f(i,j);

diag(v) – создает диагональную матрицу, элементы главной диагонали которой хранятся в векторе v;

identity(n) – создает единичную матрицу порядка n;

augment(A,B) – из матриц А и В формируется третья матрица, первые столбцыкоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число строк);

stack(A,B) – из матриц А и В формируется третья матрица, первые строкикоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число столбцов);

submatrix(A,l,k,p,r) – формирует матрицу, которая является блоком матрицы А, расположенным в строках с l по k и в столбцах с p по r (l

Re(A) – возвращает матрицу (вектор) действительных частей матрицы (вектора) А с комплексными элементами;

Im(A) – возвращает матрицу (вектор) мнимых частей матрицы (вектора) А с комплексными элементами;

Функции вычисления различных числовых характеристик матриц:

last(v) – вычисление номера последнего элемента вектора v;

length(v) – вычисление количества элементов вектора v;

rows(A) – вычисление числа строк в матрице А;

cols(A) – вычисление числа столбцов в матрице А;

max(A) – вычисление наибольшего элемента в матрице (векторе) А;

min(A) – вычисление наименьшего элемента в матрице (векторе) А;

mean(A) – вычисление среднего значения матрицы (вектора) А;

tr(A) – вычисление следа (суммы диагональных элементов) квадратной матрицы А;

ranc(A) – вычисление ранга матрицы А;

Функции, реализующие численные алгоритмы:

rref(A) – приведение матрицы А к ступенчатому виду;

geninv(A) – вычисляет матрицу, левую обратную к матрице А, L∙A=E, где Е – единичная матрица размером n×n, L – прямоугольная матрица размером n×m, А – прямоугольная матрица размером m×n;

lsolve(A,b) – решение системы линейных алгебраических уравнений A∙x=b.

lu(A) – выполняет треугольное разложение матрицы А: A=С∙L∙U, где L и U – соответственно нижняя и верхняя треугольные матрицы, все четыре матрицы квадратные и одного порядка;

qr(A) – выполняет разложение матрицы А: A=Q∙R, где Q – ортогональная матрица, а R – верхняя треугольная матрицы;

cholesky(A) – выполняет разложение матрицы А по схеме Холецкого: А=L∙L T , где А — квадратная, симметричная, положительно определенная матрица, L – треугольная матрица;

sort(v) – сортировка элементов вектора v в порядке возрастания их значений;

reverse(v) – перестановка элементов вектора v в обратном порядке;

csort(A,n) – перестановка строк матрицы А таким образом, чтобы отсортированным оказался n-й столбец;

rsort(A,n) – перестановка столбцов матрицы А таким образом, чтобы отсортированной оказалась n-я строка.

ЗАДАЧА 1. Сформировать матрицу H из элементов матрицы D, исключив третий столбец и вторую строку.

Функция от вектора маткад

ЗАДАЧА 2. Сформировать матрицу H следующим образом. Первая и последняя строки равны строкам матрицы D, остальные совпадают с матрицей C.

Функция от вектора маткад

ЗАДАЧА 3. Сформировать матрицу таким образом, чтобы элементы на главной диагонали были равны 1, выше главной диагонали – 2, а ниже – 3.

Функция от вектора маткад

ЗАДАЧА 4. Элементы матрицы формируются по формуле Функция от вектора маткад. Сформировать вектор из максимальных элементов столбцов матрицы А. Найти сумму элементов матрицы, расположенных в четных строках.

Функция от вектора маткад

ЗАДАЧА 5. Выполнить действия над матрицами А, В, С:

Функция от вектора маткад

ЗАДАЧА 6. Решить систему линейных уравнений при помощи правила Крамера:

Для решения поставленной задачи необходимо выполнить следующие действия:

1. Сформировать матрицу системы А и вектор правых частей b.

2. Вычислить главный определитель .

3. Сформировать вспомогательные матрицы (удобно скопировать матрицу А несколько раз и последовательно заменять в ней столбцы на вектор b) для вычисления определителей i;

4. Вычислить определители i;

5. Найти решение системы по формуле xi=∆i/∆.

Функция от вектора маткад

Функция от вектора маткад

ЗАДАЧА 7. Решить систему линейных уравнений методом обратной матрицы.

1. Сформировать матрицу коэффициентов и вектор свободных членов системы.

2. Решить систему, представив вектор неизвестных как произведение матрицы, обратной к матрице системы и вектора свободных членов.

Функция от вектора маткад

ЗАДАЧА 8. Решить систему линейных уравнений методом Гаусса.

Порядок решения задачи:

1. Сформировать матрицу коэффициентов и вектор свободных членов заданной системы.

2. Сформировать расширенную матрицу системы при помощи функции augment(A,b);

3. Используя функцию rref(A), привести расширенную матрицу к ступенчатому виду.

4. Получить решение системы, выделив последний столбец матрицы, полученной в предыдущем пункте.

5. Выполнить проверку Ax-B=0.

Функция от вектора маткад

ЗАДАЧА 9. Решить систему при помощи функции lsolve:

Функция от вектора маткад

Функция от вектора маткад

Пример системы, которая не имеет решений:

Функция от вектора маткад

Функция от вектора маткад

Пример системы, которая имеет бесконечное множество решений

Функция от вектора маткад Функция от вектора маткадФункция от вектора маткад

ЗАДАЧА 10. Решить систему при помощи решающего блока.

Решающий блок начинается с ключевого слова Given (Дано), которое необходимо ввести с клавиатуры.

Правее и ниже ключевого слова записываются уравнения системы.

Знак равенства в уравнениях вводится при помощи клавиш Ctrl+= или выбирается на панели инструментов Boolean.

Правее и ниже последнего уравнения системы вводится функция Find(x1,x2,…xn) (Найти), в скобках перечисляются имена переменных, значения которых нужно найти.

Численное решение системы можно получить, поставив знак равенства после функции Find(x1,x2,…xn).

Символьное решение получится, если после функции Find(x1,x2,…xn) указать знак стрелки, который находится в панели инструментов Symbolic (Ctrl+.).

Видео:Основные действия с матрицами и векторами в MathCAD 14 (20/34)Скачать

Основные действия с матрицами и векторами в MathCAD 14 (20/34)

Функция от вектора маткад

  • Функция от вектора маткад
  • Функция от вектора маткад

Видео:7. MathCad. Векторы и матрицыСкачать

7. MathCad. Векторы и матрицы

Mathcad для студентов

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Mathcad для начинающих

Видео:Матрицы. Скалярное и векторное произведение векторов в Mathcad, матричные функции(Урок 3.3)Скачать

Матрицы. Скалярное и векторное произведение векторов в Mathcad, матричные функции(Урок 3.3)

Скачать программы бесплатно

Видео:Числовое решение. Функция polyroots в MathCAD 14 (27/34)Скачать

Числовое решение. Функция polyroots в MathCAD 14 (27/34)

Матричные функции в Mathcad

Mathсad имеет более 50 функций, предназначенных для работы с векторами и матрицами. Все функции можно разбить на группы по их функциональному назначению. Например, функции, предназначенные для создания матриц общего и специального вида, редактирования и преобразования матриц, функции, определяющие параметры матриц и т. д. Рассмотрим часть этих функций, которые имеют наибольшее прикладное значение.

Среди функций, предназначенных для создания матриц, следует выделить функцию matrix(L,N,f), где L – число строк матрицы, N – число столбцов матрицы, f – функция f(l,n) при . Другая функция из этой группы identity(n). Функция предназначена для создания единичной матрицы размерности n. Следующая функция geninv(M) позволяет осуществить обращение матрицы M, аналогично операции M -1 .

Для определения размерности матрицы в Mathcad предназначены функция rows(M), определяющая число строк матрицы M, и функция cols(M), определяющая число колонок матрицы M.

Сортировку элементов матрицы осуществляют две функции csort(M,i), rsort(M,j). Функция csort(M,i) обеспечивает сортировку по возрастанию элементов i – го столбца путем перестановки строк, а функция rsort(M,j) – сортировку по возрастанию элементов j –ой строки путем перестановки столбцов.

Для определения минимального и максимального элемента матрицы используются функции min(M) и max(M).

Выделить произвольную подматрицу из матрицы М в Mathcad можно посредством функции submatrix (M, r1, r2, c1, c2), где М – исходная матрица, r1 и r2 –нижний и верхний номер строки матрицы М, включаемых в результирующую подматрицу, а с1 и с2 – нижней и верхний номер столбца матрицы М, включаемых в результирующую подматрицу. Слияние матриц можно осуществить, используя функции augment(A,B,…) и stack(A,B,…). Функция augment(A,B,…) предназначена для слияния матриц А, В и т.д. слева направо. Причем количество строк в матрицах должно быть одинаково. Вторая функция stack(A,B,…) выполняет слияние матриц сверху вниз. Количество столбцов в матрицах должно быть также одинаково. Данные функции могут быть применены и к векторам. На листинге приведен пример использования рассмотренных матричных функций.

💡 Видео

Оператор векторизации в MathCAD 14 (23/34)Скачать

Оператор векторизации в MathCAD 14 (23/34)

Основы работы в Mathcad ГрафикиСкачать

Основы работы в Mathcad  Графики

[DeepLearning | видео 2] Градиентный спуск: как учатся нейронные сетиСкачать

[DeepLearning | видео 2] Градиентный спуск: как учатся нейронные сети

Дискретные переменные в MathCAD 14 (9/34)Скачать

Дискретные переменные в MathCAD 14 (9/34)

Simulink 01 Начало работыСкачать

Simulink 01 Начало работы

Числовое решение. Функция root в MathCAD 14 (28/34)Скачать

Числовое решение. Функция root в MathCAD 14 (28/34)

Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Урок 3. МКЭ в Mathcad. Векторы геометрических характеристикСкачать

Урок 3. МКЭ в Mathcad. Векторы геометрических характеристик

Встроенные функции в MathCAD 14 (7/34)Скачать

Встроенные функции в MathCAD 14 (7/34)

Построение трехмерного графика в MathCAD 14 (14/34)Скачать

Построение трехмерного графика в MathCAD 14 (14/34)

Матрицы в Mathcad(создание и редактирование матриц)(Урок 3.1)Скачать

Матрицы в Mathcad(создание и редактирование матриц)(Урок 3.1)

Функции пользователя в MathCAD 14 (8/34)Скачать

Функции пользователя в MathCAD 14 (8/34)

Урок 8. МКЭ в Mathcad. Векторы концевых усилийСкачать

Урок 8. МКЭ в Mathcad. Векторы концевых усилий
Поделиться или сохранить к себе: