Формулы вписанной окружности в квадрате

Радиусы описанной и вписанной окружностей в квадрат
Содержание
  1. Окружность вписанная в квадрат
  2. Окружность описанная около квадрата
  3. Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.
  4. Квадрат. Онлайн калькулятор
  5. Свойства квадрата
  6. Диагональ квадрата
  7. Окружность, вписанная в квадрат
  8. Формула вычисления радиуса вписанной окружности через сторону квадрата
  9. Формула вычисления сторон квадрата через радиус вписанной окружности
  10. Окружность, описанная около квадрата
  11. Формула радиуса окружности описанной вокруг квадрата
  12. Формула стороны квадрата через радиус описанной около квадрата окружности
  13. Периметр квадрата
  14. Признаки квадрата
  15. Квадрат вписанный в окружность
  16. Определение
  17. Формулы
  18. Радиус вписанной окружности в квадрат
  19. Радиус описанной окружности около квадрата
  20. Сторона квадрата
  21. Площадь квадрата
  22. Периметр квадрата
  23. Диагональ квадрата
  24. 🌟 Видео

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Окружность вписанная в квадрат

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. Формулы вписанной окружности в квадратеУ квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O. Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°. Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Формулы вписанной окружности в квадрате

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность описанная около квадрата

Формулы вписанной окружности в квадратеВокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Формулы вписанной окружности в квадрате

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
Формулы вписанной окружности в квадрате, отсюда Формулы вписанной окружности в квадрате
Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы. Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата. Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:
Формулы вписанной окружности в квадрате
Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:
Формулы вписанной окружности в квадрате

Видео:Квадрат в окружности или окружность в квадрате #ShortsСкачать

Квадрат в окружности или окружность в квадрате #Shorts

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=Формулы вписанной окружности в квадрате;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.
Формулы вписанной окружности в квадрате

Видео:СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностейСкачать

СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностей

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Формулы вписанной окружности в квадрате

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Формулы вписанной окружности в квадратеФормулы вписанной окружности в квадратеФормулы вписанной окружности в квадратеФормулы вписанной окружности в квадратеФормулы вписанной окружности в квадратеФормулы вписанной окружности в квадрате

Видео:Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.Скачать

Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

Формулы вписанной окружности в квадрате

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Формулы вписанной окружности в квадрате
Формулы вписанной окружности в квадрате.(1)

Из равенства (1) найдем d:

Формулы вписанной окружности в квадрате.(2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Формулы вписанной окружности в квадрате

Ответ: Формулы вписанной окружности в квадрате

Видео:Геометрия. ОГЭ по математике. Задание 16Скачать

Геометрия. ОГЭ по математике. Задание 16

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Формулы вписанной окружности в квадрате

Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

Формулы вписанной окружности в квадрате(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Формулы вписанной окружности в квадрате

Ответ: Формулы вписанной окружности в квадрате

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

Формулы вписанной окружности в квадрате(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Формулы вписанной окружности в квадрате

Ответ: Формулы вписанной окружности в квадрате

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Формулы вписанной окружности в квадрате

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

Формулы вписанной окружности в квадрате
Формулы вписанной окружности в квадрате(5)

Из формулы (5) найдем R:

Формулы вписанной окружности в квадрате
Формулы вписанной окружности в квадрате(6)

или, умножая числитель и знаменатель на Формулы вписанной окружности в квадрате, получим:

Формулы вписанной окружности в квадрате.(7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Формулы вписанной окружности в квадрате

Ответ: Формулы вписанной окружности в квадрате

Видео:R и r для квадрата. Как вывести формулы радиуса вписанной и описанной окружностей для квадрата.Скачать

R и r для квадрата. Как вывести формулы радиуса вписанной и описанной окружностей для квадрата.

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

Формулы вписанной окружности в квадрате
Формулы вписанной окружности в квадрате.(8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Формулы вписанной окружности в квадратеНайти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя Формулы вписанной окружности в квадратев (8), получим:

Формулы вписанной окружности в квадрате

Ответ: Формулы вписанной окружности в квадрате

Видео:Задание 16 ОГЭ по математике. Окружность описана около квадратаСкачать

Задание 16 ОГЭ по математике. Окружность описана около квадрата

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

Формулы вписанной окружности в квадрате(9)

где Формулы вписанной окружности в квадрате− сторона квадрата.

Пример 6. Сторона квадрата равен Формулы вписанной окружности в квадрате. Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя Формулы вписанной окружности в квадратев (9), получим:

Формулы вписанной окружности в квадрате

Ответ: Формулы вписанной окружности в квадрате

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом. Формулы вписанной окружности в квадрате

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Формулы вписанной окружности в квадрате

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

Формулы вписанной окружности в квадрате(10)

Так как AD и BC перпендикулярны, то

Формулы вписанной окружности в квадратеФормулы вписанной окружности в квадрате(11)

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

Формулы вписанной окружности в квадрате(12)

Эти реугольники также равнобедренные. Тогда

Формулы вписанной окружности в квадратеФормулы вписанной окружности в квадрате(13)

Из (13) следует, что

Формулы вписанной окружности в квадрате(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).Формулы вписанной окружности в квадрате

Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Квадрат вписанный в окружность

Видео:Геометрия с нуля! / Выпуск № 6. Формула квадрата, вписанного в окружность / ОГЭ по математике 2022Скачать

Геометрия с нуля! / Выпуск № 6. Формула квадрата, вписанного в окружность / ОГЭ по математике 2022

Определение

Квадрат, вписанный в окружность — это квадрат, который находится
внутри окружности и соприкасается с ней углами.

На рисунке 1 изображена окружность, описанная около
квадрата
и окружность, вписанная в квадрат.
Формулы вписанной окружности в квадрате

Видео:Радиус вписанной окружности, формулу через площадь и полупериметрСкачать

Радиус вписанной окружности, формулу через площадь и полупериметр

Формулы

Радиус вписанной окружности в квадрат

  1. Радиус вписанной окружности в квадрат, если известна сторона:

Радиус вписанной окружности в квадрат, если известен периметр:

Радиус вписанной окружности в квадрат, если известна площадь:

Радиус вписанной окружности в квадрат, если известен радиус описанной окружности:

Радиус вписанной окружности в квадрат, если известна диагональ:

Радиус описанной окружности около квадрата

  1. Радиус описанной окружности около квадрата, если известна сторона:

Радиус описанной окружности около квадрата, если известен периметр:

Радиус описанной окружности около квадрата, если известнаплощадь:

Радиус описанной окружности около квадрата, если известен радиус вписанной окружности:

Радиус описанной окружности около квадрата, если известнадиагональ:

Сторона квадрата

  1. Сторона квадрата вписанного в окружность, если известнаплощадь:

Сторона квадрата вписанного в окружность, если известнадиагональ:

Сторона квадрата вписанного в окружность, если известен периметр:

Площадь квадрата

  1. Площадь квадрата вписанного в окружность, если известна сторона:

Площадь квадрата вписанного в окружность, если известен радиус вписанной окружности:

Площадь квадрата вписанного в окружность, если известен радиус описанной окружности:

Площадь квадрата вписанного в окружность, если известен периметр:

Площадь квадрата вписанного в окружность, если известна диагональ:

Периметр квадрата

  1. Периметр квадрата вписанного в окружность, если известна сторона:

Периметр квадрата вписанного в окружность, если известна площадь:

Периметр квадрата вписанного в окружность, если известенрадиус вписанной окружности:

Периметр квадрата вписанного в окружность, если известен радиус описанной окружности:

Периметр квадрата вписанного в окружность, если известна диагональ:

Диагональ квадрата

  1. Диагональ квадрата вписанного в окружность, если известна сторона:

Диагональ квадрата вписанного в окружность, если известна площадь:

Диагональ квадрата вписанного в окружность, если известен периметр:

Диагональ квадрата вписанного в окружность, если известен радиус вписанной окружности:

Диагональ квадрата вписанного в окружность, если известен радиус описанной окружности:

🌟 Видео

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

16 задание ОГЭ 2023 Окружность Квадрат#ShortsСкачать

16 задание  ОГЭ 2023 Окружность  Квадрат#Shorts

Задание 16 Часть 3Скачать

Задание 16  Часть 3
Поделиться или сохранить к себе: