С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).
Можно дать и другое определение прямоугольника.
Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.
- Свойства прямоугольника
- Диагональ прямоугольника
- Окружность, описанная около прямоугольника
- Формула радиуса окружности описанной около прямоугольника
- Периметр прямоугольника
- Формулы сторон прямоугольника через его диагональ и периметр
- Признаки прямоугольника
- Плоские геометрические фигуры: свойства и основные формулы
- Четырёхугольник
- Основные свойства:
- Квадрат
- Основные формулы:
- Свойства:
- Прямоугольник
- Основные формулы:
- Свойства:
- Параллелограмм
- Определения:
- Основные формулы:
- Свойства:
- Ромб
- Основные формулы:
- Свойства:
- Трапеция
- Определения:
- Основные формулы:
- Свойства:
- Треугольник
- Определения:
- Основные формулы:
- Свойства:
- Окружность
- Определения:
- Основные формулы:
- Описанные и вписанные окружности — формулы, свойства и определение с примерами решения
- Описанная и вписанная окружности треугольника
- Прямоугольный треугольник и его описанная и вписанная окружности
- Вписанные и описанные четырехугольники
- Окружность, вписанная в треугольник
- Описанная трапеция
- Дополнительные свойства и признаки вписанного четырехугольника
- Обобщенная теорема Пифагора
- Формула Эйлера для окружностей
- Справочная информация по описанной и вписанной окружности треугольника
- 🔥 Видео
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Свойства прямоугольника
Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.
- 1. Стороны прямоугольника являются его высотами.
- 2. Все углы прямоугольника прямые.
- 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
- 4. Диагонали прямоугольника равны.
- 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.
Длиной прямоугольника называется более длинная пара его сторон.
Шириной прямоугольника называется более короткая пара его сторон.
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Диагональ прямоугольника
Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
. | (1) |
Из равенства (1) найдем d:
. | (2) |
Пример 1. Стороны прямоугольника равны . Найти диагональ прямоугольника.
Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя в (2), получим:
Ответ:
Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Окружность, описанная около прямоугольника
Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Формула радиуса окружности описанной около прямоугольника
Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.
Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть
( small R=frac ) | (3) |
Подставляя (3) в (2), получим:
( small R=frac<large sqrt> ) | (4) |
Пример 2. Стороны прямоугольника равны . Найти радиус окружности, описанной вокруг прямоугольника.
Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя в (4), получим:
Ответ:
Видео:Геометрия. 9 класс. Формулы для нахождения радиусов вписанной и описанной окружностей треугольникаСкачать
Периметр прямоугольника
Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Периметр прямоугольника вычисляется формулой:
(5) |
где ( small a ) и ( small b ) − стороны прямоугольника.
Пример 3. Стороны прямоугольника равны . Найти периметр прямоугольника.
Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя в (5), получим:
Ответ:
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Формулы сторон прямоугольника через его диагональ и периметр
Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).
Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:
(6) |
(7) |
Из формулы (7) найдем ( small b ) и подставим в (6):
(8) |
(9) |
Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):
(10) |
Вычислим дискриминант квадратного уравнения (10):
(11) |
Сторона прямоугольника вычисляется из следующих формул:
(12) |
После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).
Примечание. Легко можно доказать, что
( frac >d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*). |
Пример 4. Диагональ прямоугольника равна , а периметр равен . Найти стороны прямоугольника.
Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим , в (11):
Подставляя значения и в первую формулу (12), получим:
Найдем другую сторону ( small b ) из формулы (8). Подставляя значения и в формулу, получим:
Ответ: ,
Видео:Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать
Признаки прямоугольника
Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.
Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.
Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.
Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Плоские геометрические фигуры: свойства и основные формулы
В статье описываются геометрические фигуры: определение, основные свойства и формулы.
Плоские геометрические фигуры:
Четырехугольник (общее для всех четырехугольников)
Квадрат
Прямоугольник
Параллелограмм
Трапеция
Треугольник
Окружность
Геометрические фигуры — это любое сочетание точек, линий и поверхностей. Геометрические фигуры разделяются на плоские и объемные.
Плоские геометрические фигуры — это фигуры, все точки которых лежат на одной плоскости. Объемные геометрические фигуры — это фигуры, не все точки которых лежат на одной плоскости.
Видео:ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Четырёхугольник
Четырёхугольник – это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три точки не лежат на одной прямой.
Основные свойства:
- Сумма углов четырёхугольника равна 360°
- Не существует четырёхугольников, у которых все углы острые или все углы тупые.
- Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов.
- Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон.
В четырёхугольник можно вписать окружность, если суммы его противолежащих сторон равны. Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.
Четырёхугольник можно описать окружностью, если сумма его противолежащих углов равна 180°.Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.
Видео:Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать
Квадрат
Квадрат – правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Основные формулы:
Периметр: P=4a, где P-периметр, a-сторона
Площадь: S=a 2 или S=d 2 /2
Сторона и диагональ связаны соотношениями: a=d/√2, d=a√2
Радиус описанной окружности: R=d или R=a/√(2)
Радиус вписанной окружности: r=a/2
где a-сторона, d-диагональ, P-периметр, S-площадь
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(2) – корень квадратный из 2.
Свойства:
- Все стороны равны, все углы равны и составляют 90°;
- Диагонали квадрата равны и перпендикулярны;
- У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей;
- Квадрат является одновременно частным случаем ромба и прямоугольника.
Видео:Формулы площади треугольника. Вписаная и описаная окружностьСкачать
Прямоугольник
Прямоугольник – четырехугольник, у которого все углы прямые.
Основные формулы:
Периметр: P=(a+b)*2
Площадь по сторонам: S = a*b
Площадь по диагонали и углу между ними: S = d²* sin γ. / 2
Стороны и диагональ связаны соотношением: d=√(a 2 +b 2 )/2 (теорема Пифагора)
Радиус описанной окружности: R= √(a 2 +b 2 )/2 (теорема Пифагора)
где a, b – длины сторон прямоугольника, d-диагональ, P-периметр, S-площадь
γ – угол между диагоналями
*Корень квадратный вычисляется из всего, что стоит в скобках после знака √, например, √(a 2 +b 2 ) – корень квадратный из (a 2 +b 2 ).
Свойства:
- Диагонали прямоугольника равны и делятся точкой пересечения пополам.
- Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали.
Видео:найти радиус окружности, описанной вокруг треугольникаСкачать
Параллелограмм
Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.
Определения:
Высота параллелограмма – это перпендикуляр, проведённый из вершины параллелограмма к противоположной стороне.
Основные формулы:
Стороны и диагональ связаны соотношением: (d1) 2 +(d2) 2 =(a 2 +b 2 )*2
Периметр: P=(a+b)*2
Площадь по стороне и высоте: S = a*h
S (Площадь) по двум сторонам и углу между ними: S=a*b*sin α
S (Площадь) по двум диагоналям и углу между ними: S=(d1*d2)/2*sin γ
где a, b – длины сторон, d1, d2 –диагонали, P-периметр, S-площадь,
h-высота, проведенная к противоположной стороне
α – угол между сторонами параллелограмма,
γ – угол между диагоналями параллелограмма (острый).
Свойства:
- У параллелограмма противоположные стороны равны и противоположные углы равны.
- Сумма любых двух соседних углов параллелограмма равна 180°.
- Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- Каждая диагональ делит параллелограмм на два равных треугольника.
- Две диагонали параллелограмма делят его на четыре равновеликих треугольника (равны площади всех 4-х треугольников)
- Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
- Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Ромб
Ромб – это параллелограмм, у которого все стороны равны.
Основные формулы:
Периметр: P=4*a
Площадь по стороне и высоте: S=a*h
Площадь по диагоналям: S = (d1*d2)/2
Радиус окружности, вписанной в ромб: r=h/2 или r =(d1*d2)/4a
Площадь по стороне и радиусу вписанной окружности: S=2*a*r
Площадь по стороне и углу: S = a 2 · sin α
где a – длина стороны, d1, d2 –диагонали, P-периметр, S-площадь,
h -высота, проведенная к противоположной стороне
α – угол между сторонами ромба
Свойства:
- Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.
- В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей. Радиус окружности: r=h/2 или r = d1*d2/4a.
Видео:Формулы для радиусов вписанной и описанной окружностей треугольника Геометрия 9классСкачать
Трапеция
Трапеция – четырёхугольник, у которого только две противолежащие стороны параллельны.
Определения:
- Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.
- Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.
- Средняя линия (первая средняя линия) трапеции – отрезок, который соединяет середины боковых сторон данной трапеции.Средняя линия трапеции параллельна её основаниям и равна их полусумме.
- Средняя линия (вторая средняя линия) – отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей.
- Равнобокая трапеция – трапеция,у которой боковые стороны равны (c=d). У равнобокой трапеции:диагонали равны, углы при основании равны, сумма противолежащих углов равна 180°.Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.
- Прямоугольная трапеция – трапеция, у которой одна из её боковых сторон перпендикулярна основаниям.
Основные формулы:
Периметр: P=a+b+c+d
Площадь определить: S=h*(a+b)/2
Стороны и диагональ равнобокой трапеции: d² = ab+c²
Радиус вписанной окружности: r = h/2
где a,b – основания, c,d – боковые стороны (с – боковые стороны в случае, если трапеция равнобокая), d1, d2 –диагонали,
P-периметр, S-площадь, h -высота, проведенная к противоположной стороне
Свойства:
В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон (a+b=c+d). Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.
Видео:Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать
Треугольник
Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).
Определения:
- Углами (внутренними углами) треугольника называются три угла, каждый из которых образован лучами, выходящими из вершин треугольника и проходящими через две другие вершины.
- Высота треугольника – перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны
- Медиана треугольника– отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
- Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне
- Равные треугольники – треугольники, у которых соответствующие стороны равны и соответствующие углы равны
- Равнобедренный треугольник– треугольник, у которого две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.
- Равносторонний или правильный треугольник – треугольник, у которого все стороны равны.
- Прямоугольный треугольник – треугольник, у которого есть прямой угол. Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.
Основные формулы:
Периметр: P=a+b+c
Площадь по стороне и высоте: S=(a*h)/2
Площадь: по сторонам и углу между ними: S=(a*b)/2* sin γ
по трем сторонам и радиусу описанной окружности: S=(a*b*c)/4R
по трем сторонам и радиусу вписанной окружности: S=(a+b+c)/2*r
Площадь прямоугольного треугольника: S=(a*b)/2
Стороны прямоугольного треугольника: c 2 =a 2 +b 2 (Теорема Пифагора)
где a,b, c – стороны (a,b –катеты , с – гипотенуза в случае прямоугольного треугольника)
d1, d2 –диагонали, h -высота, проведенная к противоположной стороне,
P-периметр, S-площадь, γ – угол между сторонами a и b
r – радиус вписанной окружности, R – радиус описанной окружности
Свойства:
- В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол.
- Сумма углов треугольника равна 180°:
- Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон: |a-b| 2 =a 2 +b 2 (Теорема Пифагора).В прямоугольном треугольнике гипотенуза всегда больше любого из катетов.
Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать
Окружность
Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.
Определения:
- Радиус – отрезок, который соединяет центр окружности с любой её точкой.
- Хорда – отрезок, который соединяет какие-либо две точки окружности (AB).
- Диаметр – хорда, проходящая через центр окружности(d). Диаметр – наибольшая хорда окружности. Наименьшей хорды окружности не существует.
- Касательная – прямая, которая лежит в одной плоскости с окружностью и имеет с ней только одну общую точку (E)
- Секущая – прямая, которая пересекает окружность в двух различных точках.
Основные формулы:
Длина окружности: L = 2πR
Площадь круга: S = π*r 2 или S = π*d 2 /4
где π = 3,14 (3,1415926535) – величина постоянная,
где r-радиус, d –диаметр, L – длина окружности, S-площадь.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Описанные и вписанные окружности — формулы, свойства и определение с примерами решения
Содержание:
Окружность, которая касается стороны треугольника и продолжений двух других его сторон, называется вневписанной окружностью треугольника. На рисунке 146 изображен треугольник АВС и три его вневписанные окружности с центрами
Вневписанные окружности обладают рядом интересных свойств:
1. Центры вписанной и вневписанной окружностей лежат на биссектрисе соответствующего внутреннего угла треугольника.
2. где — радиус вписанной окружности треугольника,
3. где R — радиус описанной окружности
Попробуйте доказать некоторые из этих свойств.
Найдем радиус вневписанной окружности треугольника АВС со сторонами а, b и с (рис. 147). Для этого проведем радиусы По свойству касательной Из подобия прямоугольных треугольников АОЕ и (по острому углу) следуетТак как то откуда
Пример:
Вычислим, используя данную формулу, радиус вневписанной окружности прямоугольного треугольника с катетами 3 и 4, которая касается гипотенузы:
Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать
Описанная и вписанная окружности треугольника
Определение. Окружность называется описанной около треугольника, если она проходит через все его вершины.
На рисунке 90 изображена окружность с радиусом R и центром описанная около треугольни ка АВС.
Так как ОА = ОВ = ОС = R, то центр описанной окружности равноудален от вершин треугольника.
Вместо слов «окружность, описанная около треугольника АВС», также говорят «окружность, описанная вокруг треугольника АВС», или «описанная окружность треугольника АВС».
Теорема (об окружности, описанной около треугольника).
Около любого треугольника можно описать окружность, причем только одну, ее центр находится в точке пересечения серединных перпендикуляров к сторонам треугольника.
Рассмотрим произвольный треугольник АВС (рис. 91). Пусть О — точка пересечения серединных перпендикуляров к его сторонам. Проведем отрезки ОА, ОВ и ОС. По свойству серединного перпендикуляра ОА = ОС, ОС = ОВ. Так как точка О равноудалена от всех вершин треугольника АВС, то окружность с центром в точке О и радиусом ОА проходит через все вершины треугольника АВС, т. е. является его описанной окружностью. Единственность описанной окружности докажите самостоятельно.
Замечание. Так как все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, то для нахождения центра описанной окружности достаточно построить точку пересечения любых двух из них.
Определение. Окружность называется вписанной в треугольник, если она касается всех его сторон.
На рисунке 92 изображена окружность с центром О и радиусом вписанная в треугольник АВС; К, М и N — точки ее касания со сторонами треугольника АВС.
Так как и по свойству касательной к окружности то центр вписанной окружности равноудален от сторон треугольника.
Вместо слов «окружность, вписанная в треугольник АВС», также говорят «вписанная окружность треугольника АВС».
Теорема (об окружности, вписанной в треугольник).
В любой треугольник можно вписать окружность, причем только одну, ее центр находится в точке пересечения биссектрис треугольника.
Рассмотрим произвольный треугольник АВС (рис. 93). Пусть О — точка пересечения его биссектрис. Проведем из точки О перпендикуляры ОК, ОМ и ON соответственно к сторонам АВ, ВС и АС. По свойству биссектрисы угла ОК = ON, ON = ОМ. Окружность с центром в точке О и радиусом ОК будет проходить через точки К, М и N и касаться сторон АВ, ВС и АС в указанных точках по признаку касательной.
Следовательно, эта окружность является вписанной в треугольник АВС. Единственность вписанной окружности докажите самостоятельно.
Замечание. Так как все три биссектрисы треугольника пересекаются в одной точке, то для нахождения центра вписанной окружности достаточно построить точку пересечения любых двух из них.
Теорема. Площадь треугольника можно найти по формуле где — полупериметр треугольника, — радиус окружности, вписанной в этот треугольник.
Пусть дан треугольник АВС со сторонами — центр его вписанной окружности (рис. 94). Соединим отрезками точку О с вершинами А, В и С. Треугольник АВС разобьется на три треугольника: Радиусы проведенные в точки касания, будут высотами этих треугольников. Площадь треугольника АВС равна сумме площадей указанных треугольников:
Следствие:
Радиус окружности, вписанной в треугольник, можно найти по формуле
Одной из важнейших задач данной темы является задача нахождения радиуса описанной и радиуса вписанной окружностей данного треугольника.
Пример:
Найти радиус окружности, описанной около равнобедренного треугольника АВС, у которого АВ = ВС = 26 см, высота ВК = 24 см
(рис. 95).
Решение:
Способ 1 (метод подобия). Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Проведем серединные перпендикуляры к сторонам АС и ВС, которые пересекутся в точке О — центре описанной окружности. Так как в равнобедренном треугольнике высота, проведенная к основанию, является медианой, то ВК — серединный перпендикуляр к стороне АС. Пусть МО — серединный перпендикуляр к стороне ВС. Тогда ВМ = 13 см, ВО = R -— искомый радиус. Поскольку (как прямоугольные с общим острым углом СВК), то ,
откуда
Способ 2 (тригонометрический метод). Из (см. рис. 95) из откуда Дальнейшее решение совпадает с приведенным в способе 1.
Способ 3* (среднее пропорциональное). Продлим высоту ВК до пересечения с описанной окружностью в точке D (рис. 96). Так как центр описанной окружности равнобедренного треугольника лежит на прямой ВК (см. способ 1), то BD = 2R — диаметр данной окружности. В прямоугольном треугольнике BCD как вписанный, опирающийся на диаметр) катет ВС есть среднее пропорциональное между гипотенузой BD и проекцией ВК катета ВС на гипотенузу. Поэтому откуда
Ответ: см.
Замечание. Из решения ключевой задачи 1 следует свойство: «Центр окружности, описанной около равнобедренного треугольника, лежит на его высоте, проведенной к основанию, или на ее продолжении».
Верно и обратное утверждение: «Если центр окружности, описанной около треугольника, лежит на высоте треугольника или на ее продолжении, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.
Полезно запомнить!
Если в ключевой задаче 1 боковую сторону обозначить а высоту, проведенную к основанию, — то получится пропорция .
Отсюда следует удобная формула для нахождения радиуса окружности, описанной около равнобедренного треугольника:
Пример:
Найти радиус окружности, вписанной в равнобедренный треугольник АВС, у которого АВ = ВС = 10 см, АС = 12 см.
Решение:
Способ 1 (метод подобия). Центр вписанной окружности находится в точке пересечения биссектрис треугольника. Проведем в треугольнике АВС биссектрисы из вершин В и С, которые пересекутся в точке О — центре вписанной окружности (рис. 97). Биссектриса ВМ, проведенная к основанию равнобедренного треугольника АВС, будет его высотой и медианой, луч СО — биссектриса угла С, — искомый радиус вписанной окружности. Так как AM = МС = 6 см, то из по теореме Пифагора (см), откуда (см). Проведем радиус ОК в точку касания окружности со стороной . Из подобия прямоугольных треугольников ВКО и ВМС ( — общий) следует:. Тогда (см).
Способ 2 (тригонометрический метод). Из (см. рис. 97) , из откуда . Дальнейшее решение совпадает с приведенным в способе 1.
Способ 3 (свойство биссектрисы треугольника). СО — биссектриса . Известно, что биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам. Поэтому ‘ откуда = 3 (см).
Способ 4 (формула ).
Из формулы площади треугольника следует:
Ответ: 3 см.
Замечание. Из решения ключевой задачи 2 следует свойство: «Центр окружности, вписанной в равнобедренный треугольник, лежит на его высоте, проведенной к основанию».
Верно и обратное утверждение: «Если центр окружности, вписанной в треугольник, лежит на высоте треугольника, то этот треугольник равнобедренный».
Обратное утверждение докажите самостоятельно.
Пример:
Дан равносторонний треугольник со стороной а. Найти радиус R его описанной окружности и радиус его вписанной окружности.
Решение:
Способ 1 (тригонометрический метод).Так как в равностороннем треугольнике биссектрисы являются и высотами, и медианами, то его биссектрисы лежат на серединных перпендикулярах к сторонам треугольника. Поэтому в равностороннем треугольнике центры описанной и вписанной окружностей совпадают.
Рассмотрим равносторонний треугольник АВС со стороной а, у которого высоты AM и ВК пересекаются в точке О — центре описанной и вписанной окружностей (рис. 98). Тогда ОА = OB = R — радиусы описанной, — радиусы вписанной окружности. Так как AM — биссектриса и Поскольку ВК — высота и медиана, то Из , откуда .
В катет ОК лежит против угла в 30°, поэтому ,
Способ 2 (свойство медиан). Поскольку AM и ВК — медианы треугольника АВС (см. рис. 98), то по свойству медиан Высоту равностороннего треугольника можно найти по формуле . Откуда
Ответ:
Полезно запомнить!
Поскольку радиус описанной окружности равностороннего треугольника то Значит, сторона равностороннего
треугольника в раз больше радиуса его описанной окружности.
Чтобы найти радиус R описанной окружности равностороннего треугольника, нужно сторону разделить на , а чтобы найти его сторону а, нужно радиус R умножить на . Радиус вписанной окружности равностороннего треугольника
Прямоугольный треугольник и его описанная и вписанная окружности
Теорема. Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, а ее радиус равен половине гипотенузы, т. е. где с — гипотенуза.
Проведем в прямоугольном треугольнике АВС медиану СО к гипотенузе АВ (рис. 111). Так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы, то ОС = ОА = ОВ.
Тогда середина гипотенузы — точка О — равноудалена от точек А, В и С и поэтому является центром описанной окружности треугольника АВС. Радиус этой окружности где с — гипотенуза.
Теорема доказана.
Замечание. Также можно доказать, что серединные перпендикуляры к катетам прямоугольного треугольника пересекаются на середине гипотенузы.
Отметим, что у остроугольного треугольника центр описанной окружности лежит внутри треугольника (рис. 112, а), у тупоугольного — вне треугольника (рис. 112, б), у прямоугольного — на середине гипотенузы (рис. 112, в). Обоснуйте первые два утверждения самостоятельно.
Теорема. Радиус окружности, вписанной в прямоугольный треугольник, можно найти по формуле , где — искомый радиус, и — катеты, — гипотенуза треугольника.
Рассмотрим прямоугольный треугольник АВС с катетами и гипотенузой . Пусть вписанная в треугольник окружность с центром О и радиусом касается сторон треугольника в точках М, N и К (рис. 113).
Проведем радиусы в точки касания и получим: Четырехугольник CMON — квадрат, так как у него все углы прямые и . Тогда Так как отрезки касательных, проведенных из одной точки к окружности, равны между собой, то Но , т. е. , откуда
Следствие: где р — полупериметр треугольника.
Преобразуем формулу радиуса вписанной окружности:
Формула в сочетании с формулами и дает возможность решать многие задачи, связанные с прямоугольным треугольником, алгебраическим методом.
Пример. Дан прямоугольный треугольник, Найти .
Решение:
Так как то
Из формулы следует . По теореме Виета (обратной) — посторонний корень.
Ответ: = 2.
Пример:
Найти радиус окружности, описанной около прямоугольного треугольника, у которого один из катетов равен 6, а радиус вписанной окружности равен 2.
Решение:
Способ 1 (геометрический). Пусть в треугольнике АВС, где — радиус вписанной окружности (рис. 114). Проведем из центра О вписанной окружности перпендикуляры ОК, ОМ и ON к сторонам треугольника, которые будут радиусами вписанной окружности. Так как — квадрат, то
По свойству касательных
Тогда По теореме Пифагора
Следовательно,
Радиус описанной окружности
Способ 2 (алгебраический). Подставив в формулу значения получим По теореме Пифагора , т. е. Тогда
Ответ: 5.
Пример:
Гипотенуза прямоугольного треугольника радиус вписанной в него окружности Найти площадь треугольника.
Решение:
Способ 1 (геометрический). Пусть в гипотенуза АВ — = с = 18,0 — центр вписанной окружности, ОК, ОМ, ON — ее радиусы, проведенные в точки касания (рис. 115). Так как
, то CMON — квадрат co стороной, равной радиусу вписанной окружности, — высота . Поскольку отрезки касательных, проведенных из одной точки к окружности, равны между собой, то АК = AM, ВК = BN.
Отсюда по катету и гипотенузе.
Площадь равна сумме удвоенной площади и площади квадрата CMON, т. е.
Способ 2 (алгебраический). Из формулы следует Возведем части равенства в квадрат: Так как и
Способ 3 (алгебраический). Из формулы следует, что Из формулы следует, что
Ответ: 40.
Реальная геометрия:
Есть два листа ДСП (древесно-стружечной плиты). Один из них имеет форму равностороннего треугольника со стороной 1 м, другой — форму прямоугольного равнобедренного треугольника с катетами, равными 1 м (рис. 120). Из каждого листа необходимо вырезать по одному кругу наибольшего диаметра. Определите, из какого листа будет вырезан круг большего диаметра и каким в этом случае будет процент отходов, если известно, что площадь круга можно найти по формуле
Видео:Описанная и вписанная окружности треугольника - 7 класс геометрияСкачать
Вписанные и описанные четырехугольники
Определение. Окружность называется описанной около многоугольника, если она проходит через все его вершины. При этом многоугольник называется вписанным в окружность.
Окружность называется вписанной в многоугольник, если она касается всех его сторон. При этом много угольник называется описанным около окружности.
Пятиугольник ABCDE (рис. 121, а) является вписанным в окружность а четырехугольник MNPK (рис. 121, б) — описанным около окружности.
Центр описанной окружности многоугольника находится в точке пересечения серединных перпендикуляров к его сторонам, а центр вписанной — в точке пересечения биссектрис его углов.
Обоснуйте эти утверждения самостоятельно.
Теорема (свойство вписанного четырехугольника).
Сумма противоположных углов четырехугольника, вписанного в окружность, равна 180°.
Пусть ABCD — четырехугольник, вписанный в окружность (рис. 122). Его углы А, В, С и D являются вписанными в окружность. Так как вписанный угол равен половине дуги, на которую он опирается, то Дуги BCD и BAD дополняют друг друга до окружности, и поэтому сумма их градусных мер равна 360°. Отсюда
Аналогично доказывается, что 180°. Теорема доказана.
Теорема (признак вписанного четырехугольника).
Если сумма противоположных углов четырехугольника равна то около него можно описать окружность.
Рассмотрим четырехугольник ABCD, у которого (рис. 123). Через вершины А, В и D проведем окружность (около любого треугольника можно описать окружность). Если бы вершина С не лежала на данной окружности, а находилась вне ее в положении или внутри нее в положении то в первом случае угол С был бы меньше, а во втором — больше половины градусной меры дуги BAD (по свойству угла между секущими и угла между пересекающимися хордами).
Тогда сумма не была бы равна 180°. Следовательно, вершина С лежит на данной окружности. Теорема доказана.
Замечание. Так как сумма углов четырехугольника равна 360°, то для того чтобы около четырехугольника можно было описать окружность, достаточно, чтобы сумма любой пары его противоположных углов была равна 180°.
Следствия.
1. Около параллелограмма можно описать окружность, только если этот параллелограмм — прямоугольник (рис. 124, а). Центр этой окружности лежит в точке пересечения диагоналей прямоугольника.
2. Около ромба можно описать окружность, только если этот ромб — квадрат (рис. 124, б).
3. Около трапеции можно описать окружность, только если она равнобедренная (рис. 124, в).
Докажите эти следствия самостоятельно.
Теорема (свойство описанного четырехугольника ).
Суммы противоположных сторон описанного четырехугольника равны между собой.
Пусть ABCD — описанный четырехугольник, М, N, Р и К — точки касания его сторон с окружностью (рис. 125). Так как отрезки касательных, проведенных к окружности из одной точки, равны между собой, то AM = АК = а, ВМ = BN = b, СР = CN = с, DP = DK = d. Тогда
откуда AD + ВС = AB + CD.
Теорема доказана.
Следствие:
Периметр описанного четырехугольника равен удвоенной сумме длин любой пары его противоположных сторон:
Теорема (признак описанного четырехугольника).
Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.
Пусть для выпуклого четырехугольника ABCD справедливо, что
(1)
Проведем окружность, которая касается прямых AD, АВ и ВС (рис. 126). Такая окружность существует, ее центр находится в точке пересечения биссектрис углов А и В. Если окружность не касается стороны CD, то либо прямая CD не имеет с окружностью общих точек, либо является секущей. Рассмотрим первый случай. Проведем отрезок который касается окружности. По свойству описанного четырехугольника
(2)
Отняв почленно от равенства (1) равенство (2), получим что противоречит неравенству треугольника.
Рассмотрев случай, когда прямая DC — секущая, также придем к противоречию (сделайте это самостоятельно). Следовательно, данная окружность касается стороны CD и в четырехугольник ABCD можно вписать окружность. Теорема доказана.
Следствия.
1. В параллелограмм можно вписать окружность, только если этот параллелограмм — ромб. Центр этой окружности лежит в точке пересечения диагоналей ромба, а ее диаметр равен высоте ромба (рис. 127, а).
2. В прямоугольник можно вписать окружность, только если этот прямоугольник — квадрат (рис. 127, б).
3. Диаметр окружности, вписанной в трапецию, равен ее высоте (рис. 127, в).
Докажите эти следствия самостоятельно.
Для описанного многоугольника справедлива формула , где S — его площадь, р — полупериметр, — радиус вписанной окружности.
Доказательство аналогично приведенному в § 8 для треугольника. Выполните его самостоятельно, используя рисунок 128.
Пример:
Найти радиус окружности, вписанной в ромб с периметром 24 см и острым углом, равным 45°.
Решение:
Способ 1 (решение прямоугольного треугольника). Пусть ABCD — ромб (рис. 129), О — центр вписанной в ромб окружности. Известно, что высота ВК ромба равна диаметру EF вписанной окружности, т. е. Так как у ромба все стороны равны , то (см).
Из прямоугольного треугольника АВК находим. что откуда Искомый радиус вписанной окружности (см).
Способ 2 (метод площадей). Ромб — параллелограмм. По формуле площади параллелограмма найдем площадь данного ромба: С другой стороны , площадь ромба можно найти по формуле площади описанного многоугольника Поскольку (см), то Отсюда (см).
Ответ: см.
Пример:
Окружность, вписанная в прямоугольную трапецию ABCD, где делит точкой касания большую боковую сторону CD на отрезки СК = 1, KD = 4. Найти площадь трапеции (рис. 130).
Решение:
Способ 1. Площадь трапеции находится по формуле Необходимо найти сумму оснований и высоту трапеции. Проведем высоту трапеции, проходящую через центр О вписанной окружности. По свойству касательных, проведенных из одной точки к окружности, CF = СК = 1, DH = DK = 4. Проведем высоту СМ. Так как HFCM — прямоугольник (все углы прямые), то НМ = FC = 1, MD = 3. В прямоугольном треугольнике CMD по теореме Пифагора Тогда По свойству описанного четырехугольника Отсюда
Способ 2*. Центр О вписанной окружности лежит на пересечении биссектрис углов и Так как как внутренние односторонние углы при и секущей CD, то (рис. 131). Тогда — прямоугольный, радиус является его высотой, проведенной к гипотенузе CD. Высота прямоугольного треугольника, проведенная к гипотенузе, — есть среднее пропорциональное между проекциями катетов на гипотенузу. Поэтому или Высота описанной трапеции равна диаметру вписанной окружности, откуда Так как по свойству описанного четырехугольника то
Ответ: 18.
Замечание. Полезно запомнить свойство: «Боковая сторона описанной трапеции видна из центра вписанной окружности под углом 90°».
Пример:
Внутри острого угла А взята точка М, из которой опущены перпендикуляры МВ и МС на стороны угла А, Найти величину угла ВАС (рис. 132, а).
Решение:
Так как в четырехугольнике АВМС сумма углов В и С равна 180°, то около него можно описать окружность. Проведем в ней хорду AM (рис. 132, б). Поскольку как вписанные углы, опирающиеся на одну и ту же дугу МС, то и прямоугольный треугольник АМС является равнобедренным, В прямоугольном треугольнике ABM откуда
Окружность, вписанная в треугольник
Пример:
Окружность вписана в треугольник АВС со сторонами ВС = а, АС = Ь, АВ = с. Вывести формулу для нахождения длин отрезков, на которые точки касания окружности со сторонами делят каждую сторону треугольника.
Решение:
Пусть К, М и N — точки касания вписанной окружности соответственно со сторонами АС, АВ и ВС треугольника АВС (рис. 140). Известно, что отрезки касательных, проведенных из одной точки к окружности, равны между собой.
Тогда, если то Так как АВ = AM + МВ, то откуда т. е. . После преобразований получим: Аналогично:
Ответ:
Замечание. Если (рис. 141), то (см. c. 69). Формула радиуса окружности, вписанной в прямоугольный треугольник, — частный случай результата задачи 1.
Описанная трапеция
Пример:
Найти площадь описанной равнобедренной трапеции с основаниями а и Ь.
Решение:
Площадь трапеции можно найти по формуле Пусть в трапеции ABCD основания — боковые стороны, — высота (рис. 142). По свойству описанного четырехугольника АВ + CD = AD + ВС, откуда . Известно, что в равнобедренной трапеции (можно опустить высоту СК и убедиться в этом). Из прямоугольного треугольника АНВ получаем: Отсюда Ответ:
Замечание. Площадь описанной равнобедренной трапеции равна произведению среднего арифметического и среднего геометрического ее оснований.
Полезно запомнить!
Для описанной равнобедренной трапеции с основаниями боковой стороной с, высотой h, средней линией и радиусом вписанной окружности (см. рис. 142) справедливы равенства:
Дополнительные свойства и признаки вписанного четырехугольника
Теорема.
Около четырехугольника можно описать окружность тогда и только тогда, когда угол между его стороной и диагональю равен углу между противоположной стороной и другой диагональю.
Рис. 143
1. Если четырехугольник ABCD вписан в окружность (рис. 143), то как вписанные углы, опирающиеся на одну и ту же дугу.
2. Докажем, что если в некотором четырехугольнике ABCD то около него можно описать окружность.
Опишем около треугольника ABD окружность.
В 8-м классе (В. В. Казаков. «Геометрия, 8», с. 186) было доказано свойство:
«Геометрическим местом точек плоскости, из которых данный отрезок AD виден под углом а, является объединение двух дуг окружностей: дуги ABD и ей симметричной относительно прямой AD, исключая точки » . Данное свойство гарантирует, что вершины всех углов, равных углу ABD и лежащих по одну сторону от прямой AD, расположены на дуге ABD окружности. Поэтому окружность, описанная около треугольника ABD, пройдет и через вершину С. Теорема доказана.
Обобщенная теорема Пифагора
В прямоугольном треугольнике проведена высота СН, которая делит его на треугольники АСН и СВН, подобные между собой и подобные треугольнику (рис. 148). Тогда теорема Пифагора может звучать так: сумма квадратов гипотенуз треугольников СВН и АСН равна квадрату гипотенузы треугольника АВС. И вообще, если — соответствующие линейные элементы то можно сформулировать обобщенную теорему Пифагора:
Действительно, из подобия указанных треугольников откуда
Пример:
Пусть (см. рис. 148). Найдем По обобщенной теореме Пифагора отсюда
Ответ: = 39.
Формула Эйлера для окружностей
Для вписанной и описанной окружностей треугольника с радиусами и расстоянием d между их центрами (рис. 149) справедлива формула Эйлера
Проверим справедливость этой формулы на примере равнобедренного треугольника АВС, у которого АВ = ВС = 10, АС = 12 (рис. 150).
Вначале найдем расстояние между центрами указанных окружностей традиционным способом.
Проведем высоту ВН, длина которой будет равна 8 (пифагорова тройка 6, 8, 10). Центры описанной и вписанной окружностей — соответственно точки , и — лежат на прямой ВН (свойство равнобедренного треугольника). Тогда— расстояние между указанными центрами. Для нахождения радиуса описанной окружности воспользуемся формулой где b — боковая сторона, — высота, проведенная к основанию равнобедренного треугольника. Получим Радиус вписанной окружности Так как то Искомое расстояние
А теперь найдем d по формуле Эйлера:
откуда Как видим, формула Эйлера достаточно эффективна.
Запомнить:
- Центр описанной окружности треугольника (многоугольника) лежит в точке пересечения серединных перпендикуляров к его сторонам.
- Центр вписанной окружности треугольника (многоугольника) лежит в точке пересечения биссектрис его углов.
- Центр описанной окружности прямоугольного треугольника лежит на середине гипотенузы, а ее радиус равен половине гипотенузы:
- Радиус вписанной окружности прямоугольного треугольника находится по формуле
- Если четырехугольник вписан в окружность, то суммы его противоположных углов равны 180°. И обратно.
- Если четырехугольник описан около окружности, то суммы его противоположных сторон равны между собой. И обратно.
- Площадь треугольника и описанного многоугольника можно найти по формуле где — полупериметр, — радиус вписанной окружности.
Справочная информация по описанной и вписанной окружности треугольника
Определение. Окружность называют описанной около треугольника, если она проходит через все вершины этого треугольника.
На рисунке 298 изображена окружность, описанная около треугольника. В этом случае также говорят, что треугольник вписан в окружность. Очевидно, что центр описанной окружности треугольника равноудален от всех его вершин. На рисунке 298 точка — центр окружности, описанной около треугольника , поэтому .
Теорема 21.1. Вокруг любого треугольника можно описать окружность.
Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , равноудаленная от всех его вершин. Тогда точка будет центром описанной окружности, а отрезки , и — ее радиусами.
На рисунке 299 изображен произвольный треугольник . Проведем серединные перпендикуляры и сторон и соответственно. Пусть точка — точка пересечения этих прямых. Поскольку точка принадлежит серединному перпендикуляру , то . Так как точка принадлежит серединному перпендикуляру , то . Значит, , т. е. точка равноудалена от всех вершин треугольника.
Заметим, что вокруг треугольника можно описать только одну окружность. Это следует из того, что серединные перпендикуляры и (рис. 299) имеют только одну точку пересечения. Следовательно, существует только одна точка, равноудаленная от всех вершин треугольника.
Следствие 1. Три серединных перпендикуляра сторон треугольника пересекаются в одной точке.
Следствие 2. Центр описанной окружности треугольника — это точка пересечения серединных перпендикуляров его сторон.
Определение. Окружность называют вписанной в треугольник, если она касается всех его сторон.
На рисунке 300 изображена окружность, вписанная в треугольник. В этом случае также говорят, что треугольник описан около окружности.
Точка (рис. 300) — центр вписанной окружности треугольника , отрезки , , — радиусы, проведенные в точки касания, . Понятно, что центр вписанной окружности треугольника равноудален от всех его сторон.
Теорема 21.2. В любой треугольник можно вписать окружность.
Доказательство: Для доказательства достаточно показать, что для любого треугольника существует точка , удаленная от каждой его стороны на некоторое расстояние г. Тогда в силу следствия из теоремы 20.4 точка будет центром окружности радиуса г, которая касается сторон .
На рисунке 301 изображен произвольный треугольник . Проведем биссектрисы углов и , — точка их пересечения. Так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и (теорема 19.2). Аналогично, так как точка принадлежит биссектрисе угла , то она равноудалена от сторон и . Следовательно, точка равноудалена от всех сторон треугольника.
Заметим, что в треугольник можно вписать только одну окружность. Это следует из того, что биссектрисы углов и (рис. 301) пересекаются только в одной точке. Следовательно, существует только одна точка, равноудаленная от сторон треугольника.
Следствие 1. Биссектрисы углов треугольника пересекаются в одной точке.
Следствие 2. Центр вписанной окружности треугольника — это точка пересечения его биссектрис.
Докажите, что радиус окружности, вписанной в прямоугольный треугольник, определяется по формуле , где — радиус вписанной окружности, и — катеты, — гипотенуза.
Решение:
В треугольнике (рис. 302) , , , , точка — центр вписанной окружности, , и — точки касания вписанной окружности со сторонами , и соответственно.
Отрезок — радиус окружности, проведенный в точку касания. Тогда .
Так как точка — центр вписанной окружности, то — биссектриса угла и . Тогда — равнобедренный прямоугольный, . Используя свойство отрезков касательных, проведенных к окружности из одной точки, получаем:
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Плоские и пространственные фигуры
- Взаимное расположение точек и прямых
- Сравнение и измерение отрезков и углов
- Первый признак равенства треугольников
- Треугольники и окружность
- Площадь треугольника
- Соотношения между сторонами и углами произвольного треугольника
- Окружность и круг
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
🔥 Видео
Геометрия 9 класс. Вписанные и описанные окружности. Ключевая задача № 4.Скачать