Основные определения и свойства. Число π |
Формулы для площади круга и его частей |
Формулы для длины окружности и ее дуг |
Площадь круга |
Длина окружности |
Длина дуги |
Площадь сектора |
Площадь сегмента |
- Основные определения и свойства
- Формулы для площади круга и его частей
- Формулы для длины окружности и её дуг
- Площадь круга
- Длина окружности
- Длина дуги
- Площадь сектора
- Площадь сегмента
- Сегмент круга
- Формулы вычисления параметров сегмента
- Как посчитать хорду окружности
- Онлайн калькулятор
- Как посчитать длину хорды (градусы)
- Как посчитать длину хорды (радианы)
- Теория
- Формула
- Пример
- 💡 Видео
Видео:Окружнось. Зависимость длины хорды, от длины дуги.Скачать

Основные определения и свойства
| Фигура | Рисунок | Определения и свойства | ||||||||||||||||||||||||
| Окружность | ![]() | |||||||||||||||||||||||||
| Дуга | ![]() | |||||||||||||||||||||||||
| Круг | ![]() | |||||||||||||||||||||||||
| Сектор | ![]() | |||||||||||||||||||||||||
| Сегмент | ![]() | |||||||||||||||||||||||||
| Правильный многоугольник | ![]() | |||||||||||||||||||||||||
![]() |
| Окружность |
![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны
Около любого правильного многоугольника можно описать окружность
Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.
Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.
Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.
Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:
Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.
Видео:Длина дуги окружности. 9 класс.Скачать

Формулы для площади круга и его частей
| Числовая характеристика | Рисунок | Формула | |||||||||
| Площадь круга | ![]() | ||||||||||
| Площадь сектора | ![]() | ||||||||||
| Площадь сегмента | ![]() |
| Площадь круга |
![]() |

где R – радиус круга, D – диаметр круга


если величина угла α выражена в радианах

если величина угла α выражена в градусах


если величина угла α выражена в радианах

если величина угла α выражена в градусах
Видео:ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

Формулы для длины окружности и её дуг
| Числовая характеристика | Рисунок | Формула | |
| Длина окружности | ![]() | ||
| Длина дуги | ![]() |
| Длина окружности |
![]() |
где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

если величина угла α выражена в градусах
Видео:Длина окружности. Математика 6 класс.Скачать

Площадь круга
Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).
Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .
Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .
Таким образом, площадь круга радиуса R , обозначаемая S , равна
Видео:Как измерить радиус детали по длине хорды и высоте сегментаСкачать

Длина окружности
то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:
откуда вытекает формула для длины окружности радиуса R :
Следствие . Длина окружности радиуса 1 равна 2π.
Видео:Окружнось, дуга, длина дуги, центральный угол.Скачать

Длина дуги
Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Площадь сектора
Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.
В случае, когда величина α выражена в градусах, справедлива пропорция
из которой вытекает равенство:
В случае, когда величина α выражена в радианах, справедлива пропорция
из которой вытекает равенство:
Видео:Окружность. Длина хорды. Теорема синусов.Скачать

Площадь сегмента
Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.
Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем
В случае, когда величина α выражена в в радианах, получаем
Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать

Сегмент круга
Вычисляет площадь, длину дуги, длину хорды, высоту и периметр сегмента круга. Описывается несколько вариантов расчета по параметрам сегмента — по углу, по хорде, по радиусу, по высоте и длине дуги.

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).
На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота
Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:
Формулы вычисления параметров сегмента
Площадь сегмента:
[1]
Длина дуги:
Видео:Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать

Как посчитать хорду окружности
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Онлайн калькулятор
Хорда круга – отрезок соединяющий две точки, лежащие на окружности.
Чтобы посчитать длину хорды вам необходимо знать, чему равен радиус (r) окружности и угол (α) между двумя радиусами, образующими вместе с хордой равнобедренный треугольник (см. рис.)
Как посчитать длину хорды (градусы)
Чему равна длина хорды окружности если её радиус ,
а
Как посчитать длину хорды (радианы)
Чему равна длина хорды окружности если её радиус ,
а
Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Теория
Чему равна длина хорды (l) окружности если известны её радиус (r) и центральный угол (α), опирающийся на данную хорду?
Формула
Пример
Если радиус круга равен 4 см, а ∠α = 90°, то длина хорды примерно равна 5.65 см.
💡 Видео
Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Длина окружности. Площадь круга - математика 6 классСкачать

ЕГЭ-2022 ||Задание №6 || Найти длину хордыСкачать

Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать

Радиус и диаметрСкачать

+Как найти длину окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружностиСкачать

Как найти длину хорды по радиусу и центральному углу. Геометрия 8-9 классСкачать

Основные определения и свойства. Число π


























