- 10 класс
- Аксиомы стереометрии и их следствия
- Некоторые следствия из аксиом
- Параллельные прямые в пространстве
- Параллельность в пространстве с примерами решения
- Параллельность в пространстве
- Основные понятия стереометрии. Аксиомы стереометрии
- Пространственные фигуры
- Взаимное расположение двух прямых в пространстве
- Параллельность прямой и плоскости
- Параллельность плоскостей
- Параллельное проектирование
- Параллельность прямых и плоскостей
- Просмотр содержимого документа «Параллельность прямых и плоскостей»
- 🔍 Видео
10 класс
 Материалы к зачетной работе по теме 
«Основные понятия и аксиомы стереометрии. Параллельность прямых и плоскостей»
Стереометрия — это раздел геометрии, в котором изучаются свойства фигур в пространстве.
Слово «стереометрия» происходит от греческих слов «στερεοσ» — объемный, пространственный и «μετρεο» — измерять.
Простейшие фигуры в пространстве: точка, прямая, плоскость.

 
Аксиомы стереометрии и их следствия
Аксиома 2. 
Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).
Из аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.
Аксиома 3. 
Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
В таком случае говорят, плоскости пересекаются по прямой.
Пример: пересечение двух смежных стен, стены и потолка комнаты.
Некоторые следствия из аксиом
Теорема 2. 
Через две пересекающиеся прямые a и b проходит плоскость, и при том только одна.

Параллельные прямые в пространстве
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Теорема о параллельных прямых.
Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Лемма о пересечении плоскости параллельными прямыми.
Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Теорема о трех прямых в пространстве.
Если две прямые параллельны третьей прямой, то они параллельны (если a∥c и b∥c, то a∥b).
Параллельность прямой и плоскости
Прямая и плоскость называются параллельными, если они не имеют общих точек.
Признак параллельности прямой и плоскости
 
Теорема. 
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Теорема. 
Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Теорема. 
Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.
Взаимное расположение прямых в пространстве
|  |  |  | 
| Признак параллельности двух плоскостей  Теорема.  |  | 
Свойства параллельных плоскостей
Вели α∥β и они пересекаются с γ, то а∥b.
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Если α∥β и AB∥CD, то АВ = CD.
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
Видео:Параллельность прямых. 10 класс.Скачать

Параллельность в пространстве с примерами решения
Содержание:
Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельность в пространстве
В этом параграфе вы ознакомитесь с основными понятиями стереометрии, аксиомами стереометрии и следствиями из них. Расширите свои представления о многогранниках. Вы узнаете о взаимном расположении двух прямых, прямой и плоскости, двух плоскостей в пространстве. Ознакомитесь с правилами, по которым изображают пространственные фигуры на плоскости.
Основные понятия стереометрии. Аксиомы стереометрии
Изучая математику, вы со многими понятиями ознакомились с помощью определений. Так, из курса планиметрии вам хорошо знакомы определения четырехугольника, трапеции, окружности и др.
Определение любого понятия основано на других понятиях, содержание которых вам уже известно. Например, рассмотрим определение трапеции: «Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны». Видим, что определение трапеции основано на таких уже введенных понятиях, как четырехугольник, сторона четырехугольника, параллельные и непараллельные стороны и др. Итак, определения вводятся по принципу «новое основано на старом». Тогда ясно, что должны существовать первоначальные понятия, которым определений не дают. Их называют основными понятиями (рис. 27.1).
В изученном вами курсе планиметрии определения не давали таким фигурам, как точка и прямая. В стереометрии, кроме них, к основным понятиям отнесем еще одну фигуру — плоскость.
Наглядное представление о плоскости дают поверхность водоема в безветренную погоду, поверхность зеркала, поверхность полированного стола, мысленно продолженные во всех направлениях.
Используя понятие плоскости, можно считать, что в планиметрии мы рассматривали только одну плоскость, и все изучаемые фигуры принадлежали этой плоскости. В стереометрии же рассматривают бесконечно много плоскостей, расположенных в пространстве.
Как правило, плоскости обозначают строчными греческими буквами 
 
Плоскость, так же как и прямая, состоит из точек, то есть плоскость — это множество точек.
Существует несколько случаев взаимного расположения точек, прямых и плоскостей в пространстве. Приведем примеры.
На рисунке 27.4 изображена точка А, принадлежащая плоскости 



На рисунке 27.5 изображена точка В, не принадлежащая плоскости 

На рисунке 27.6 изображена прямая 





 
Если прямая и плоскость имеют только одну общую точку, то говорят, что прямая пересекает плоскость. На рисунке 27.7 изображена прямая 

 
В дальнейшем, говоря «две точки», «три точки», «две плоскости» и т.п., будем иметь в виду, что это разные точки, разные прямые и разные плоскости. Если две плоскости имеют общую точку, то говорят, что эти плоскости пересекаются.
На рисунке 27.8 изображены плоскости 

На начальном этапе изучения стереометрии невозможно доказывать теоремы, опираясь на другие утверждения, поскольку этих утверждений еще нет. Поэтому первые свойства, касающиеся точек, прямых и плоскостей в пространстве, принимают без доказательства и называют аксиомами. Отметим, что ряд аксиом стереометрии по формулировкам дословно совпадают со знакомыми вам аксиомами планиметрии.
- какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей;
- через любые две точки можно провести прямую, и притом только одну.
Мы не будем знакомиться со строгим аксиоматическим построением стереометрии. Рассмотрим лишь некоторые утверждения, выражающие основные свойства плоскостей пространства, основываясь на которых обычно строят курс стереометрии в школе.
Аксиома А1. В любой плоскости пространства выполняются все аксиомы планиметрии.
Если в любой плоскости пространства выполняются аксиомы планиметрии, то выполняются и следствия из этих аксиом, то есть теоремы планиметрии. Следовательно, в стереометрии можно пользоваться всеми известными нам свойствами плоских фигур.
Аксиома А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Рисунки 27.9-27.11 иллюстрируют эту аксиому.
 
Из этой аксиомы следует, что три точки пространства, не лежащие на одной прямой, определяют единственную плоскость, про ходящую через эти точки. Поэтому для обозначения плоскости можно указать любые три ее точки, не лежащие на одной прямой.
Например, на рисунке 27.12 изображена плоскость АВС. Запись 

 
Аксиома АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.
Например, на рисунке 27.13 точки А, В и С принадлежат плоскости АВС. Тогда можно записать: 
Утверждение, сформулированное в аксиоме АЗ, часто используют на практике, когда хотят проверить, является ли данная поверхность ровной (плоской). Для этого к поверхности в разных местах прикладывают ровную рейку и проверяют, есть ли зазор между рейкой и поверхностью (рис. 27.14).
Аксиома А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.
Эту аксиому можно проиллюстрировать с помощью согнутого листа бумаги или с помощью вашего учебника (рис. 27.15).
 
Пример:
Докажите, что если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.
Решение:
Пусть точка А является общей для двух плоскостей 







Теорема 27.1. Через прямую и не принадлежащую ей точку проходит плоскость, и притом только одна (рис. 27.17).
Теорема 27.2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 27.18).
 
Из аксиомы А2 и теорем 27.1 и 27.2 следует, что плоскость однозначно определяется:
- тремя точками, не лежащими на одной прямой;
- прямой и точкой, не принадлежащей этой прямой;
- двумя пересекающимися прямыми.
Таким образом, мы указали три способа задания плоскости.
Пространственные фигуры
Начальные сведения о многогранниках. В стереометрии, кроме точек, прямых и плоскостей, рассматривают пространственные фигуры, то есть фигуры, не все точки которых лежат в одной плоскости. Некоторые из пространственных фигур вам уже знакомы. Так, на рисунке 28.1 изображены цилиндр, конус и шар. Подробно эти фигуры вы будете изучать в 11 классе.
 
На рисунке 28.2 изображена еще одна знакомая вам пространственная фигура — пирамида. Эта фигура является частным видом многогранника. Примеры многогранников показаны на рисунке 28.3.
Поверхность многогранника состоит из многоугольников. Их называют гранями многогранника. Стороны многоугольников называют ребрами многогранника, а вершины — вершинами многогранника (рис. 28.4).
 
На рисунке 28.5 изображена пятиугольная пирамида FABCDE.
Поверхность этого многогранника состоит из пяти треугольников, которые называют боковыми гранями пирамиды, и одного пятиугольника, который называют основанием пирамиды. Вершину F, общую для всех боковых граней, называют вершиной пирамиды.
Ребра FA, FB, FC, FD и FE называют боковыми ребрами пирамиды, а ребра А В, ВС, CD, DE и ЕА — ребрами основания пирамиды.
На рисунке 28.6 изображена треугольная пирамида DABC. Треугольную пирамиду называют также тетраэдром.
Еще одним частным видом многогранника является призма. На рисунке 28.7 изображена треугольная призма 

Остальные грани призмы — параллелограммы. Их называют боковыми гранями призмы. Ребра 
 
На рисунке 28.8 изображена четырехугольная призма 

Вы знакомы также с частным видом четырехугольной призмы — прямоугольным параллелепипедом. На рисунке 28.9 изображен прямоугольный параллелепипед 
В свою очередь, частным видом прямоугольного параллелепипеда является куб. Все грани куба — равные квадраты (рис. 28.10).
Четырехугольную призму, основанием которой является параллелограмм, называют параллелепипедом.
В курсе геометрии 11 класса вы более подробно ознакомитесь с многогранниками и их частными видами.
Пример:
На ребрах 



 
Решение:
Точки М и N принадлежат плоскости 


Взаимное расположение двух прямых в пространстве
Из курса планиметрии вы знаете, что две прямые называют пересекающимися, если они имеют только одну общую точку. Такое же определение пересекающихся прямых дают и в стереометрии. Вам также известно, что две прямые называют параллельными, если они не пересекаются. Можно ли это определение перенести в стереометрию?
Обратимся к рисунку 29.1, на котором изображен куб 


Определение. Две прямые в пространстве называют параллельным и, если они лежат в одной плоскости и не пересекаются. Если прямые 
Определение. Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости. Например, на рисунке 29.1 прямые АВ и DC — параллельные, а прямые 
Наглядное представление о параллельных прямых дают колонны здания, корабельный лес, бревна сруба (рис. 29.2).
Наглядное представление о скрещивающихся прямых дают провода линий электропередачи, различные элементы строительных конструкций (рис. 29.3). Итак, существуют три возможных случая взаимного расположения двух прямых в пространстве (рис. 29.4):
- прямые пересекаются;
- прямые параллельны;
- прямые скрещиваются.
Два отрезка называют параллельными (скрещивающимися), если они лежат на параллельных (скрещивающихся) прямых. Например, ребра 



Теорема 29.1. Через две параллельные прямые проходит плоскость, и притом только одна.
Доказательство. Пусть даны параллельные прямые 

Существование плоскости 

Если предположить, что существует еще одна плоскость, проходящая через прямые 

Существует три способа задания плоскости. Теорему 29.1 можно рассматривать как еще один способ задания плоскости — с помощью двух параллельных прямых.
Установить параллельность двух прямых, лежащих в одной плоскости, можно с помощью известных вам из курса планиметрии признаков параллельности двух прямых. А как установить, являются ли две прямые скрещивающимися? Ответить на этот вопрос позволяет следующая теорема.
Теорема 29.2 (признак скрещивающихся прямых). Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся (рис. 29.6).
 
На рисунке 29.7 ребра АВ и DC тетраэдра DABC являются скрещивающимися. Действительно, прямая DC пересекает плоскость АВС в точке С, не принадлежащей прямой АВ. Следовательно, по признаку скрещивающихся прямых прямые АВ и DC являются скрещивающимися.
Параллельность прямой и плоскости
Вам уже известны два возможных случая взаимного расположения прямой и плоскости:
- прямая принадлежит плоскости, то есть все точки прямой принадлежат плоскости;
- прямая пересекает плоскость, то есть прямая имеет с плоскостью только одну общую точку.
Понятно, что возможен и третий случай, когда прямая и плоскость не имеют общих точек. Например, прямая, содержащая ребро 

Определение. Прямую и плоскость называют параллельными, если они не имеют общих точек.
Если прямая 






Наглядное представление о прямой, параллельной плоскости, дают некоторые спортивные снаряды. Например, брусья параллельны плоскости пола (рис. 30.2). Другой пример — водосточная труба: она параллельна плоскости стены (рис. 30.3).
 
Выяснять, параллельны ли данные прямая и плоскость, с помощью определения затруднительно. Гораздо эффективнее пользоваться следующей теоремой.
Теорема 30.1 (признак параллельности прямой и плоскости). Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.
Например, на рисунке 30.1 прямые 


Поскольку 
Отрезок называют параллельным плоскости, если он принадлежит прямой, параллельной этой плоскости. Например, ребро АВ куба параллельно плоскости 
Вы умеете устанавливать параллельность двух прямых с помощью теорем-признаков, известных из планиметрии. Рассмотрим теоремы, описывающие достаточные условия параллельности двух прямых в пространстве.
Теорема 30.2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.
На рисунке 30.4 прямая 





 
Теорема 30.3. Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, отличной от двух данных, то эта прямая параллельна каждой из двух данных прямых.
На рисунке 30.5 прямые 




Теорема 30.4. Две прямые, параллельные третьей прямой, параллельны между собой.
Пример:
Докажите, что если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна прямой их пересечения.
Решение:
Пусть даны прямая 













Параллельность плоскостей
Рассмотрим варианты возможного взаимного расположения двух плоскостей. Вы знаете, что две плоскости могут иметь общие точки, то есть пересекаться. Понятно, что две плоскости могут и не иметь общих точек. Например, плоскости АВС и 
Определение. Две плоскости называют параллельны ми, если они не имеют общих точек.
Если плоскости 




Наглядное представление о параллельных плоскостях дают потолок и пол комнаты; поверхность воды, налитой в аквариум, и его дно (рис. 31.2).
Из определения параллельных плоскостей следует, что любая прямая, лежащая в одной из двух параллельных плоскостей, параллельна другой плоскости.
В тех случаях, когда надо выяснить, являются ли две плоскости параллельными, удобно пользоваться следующей теоремой.
Теорема 31.1 (признак параллельности двух плоскостей). Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.
 
Например, на рисунке 31.3 изображен прямоугольный параллелепипед 



Будем говорить, что два многоугольника параллельны, если они лежат в параллельных плоскостях. Например, грани 


Теорема 31.2. Через точку в пространстве, не принадлежащую данной плоскости, проходит плоскость, параллельная данной плоскости, и притом только одна (рис. 31.4).
Теорема 31.3. Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны (рис. 31.5).
Пример:
Докажите, что отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
Решение:
Пусть даны параллельные плоскости 





По теореме 31.3 получаем: 


 
Параллельное проектирование
Многие явления и процессы, наблюдаемые нами в повседневной жизни, служат примерами преобразований, при которых образом пространственной фигуры является плоская фигура. Увидеть одно из таких явлений можно в солнечную погоду, когда предмет отбрасывает тень на плоскую поверхность (рис. 32.1). Этот пример иллюстрирует преобразование фигуры, которое называют параллельным проектированием. С помощью этого преобразования на плоскости создают изображения пространственных фигур.
 
Многие рисунки настоящего учебника, на которых изображены пространственные фигуры, можно рассматривать как тени, отбрасываемые на плоскость страницы предметами, освещенными параллельными лучами. Ознакомимся подробнее с параллельным проектированием.
Пусть даны плоскость 












Выбирая выгодные положения плоскости 

Пусть даны плоскость 







В следующих теоремах будем рассматривать прямые и отрезки, не параллельные прямой 
Теорема 32.1. Параллельной проекцией прямой является прямая; параллельной проекцией отрезка является отрезок (рис. 32.4).
 
Теорема 32.2. Параллельной проекцией двух параллельных прямых являются или прямая (рис. 32.5), или две параллельные прямые (рис. 32.6). Параллельные проекции двух параллельных отрезков лежат на одной прямой или на параллельных прямых (рис. 32.6).
Теорема 32.3. Отношение параллельных проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению самих отрезков (рис. 32.7).
Рассмотрим изображения некоторых многоугольников на плоскости 
Если прямая 

Из свойств параллельного проектирования следует, что параллельной проекцией треугольника является треугольник (рис. 32.8).
 
Поскольку при параллельном проектировании сохраняется параллельность отрезков, то изображением параллелограмма (в частности, прямоугольника, ромба, квадрата) является параллелограмм (рис. 32.9).
Также из свойств параллельного проектирования следует, что изображением трапеции является трапеция.
Параллельной проекцией окружности является фигура, которую называют эллипсом (рис. 32.10).
Изображения объектов с помощью параллельного проектирования широко используют в самых разных областях промышленности, например в автомобилестроении (рис. 32.11).
 
Основные аксиомы стереометрии
- А1. В любой плоскости пространства выполняются все аксиомы планиметрии.
- А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.
- АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.
- А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.
Плоскость однозначно определяется:
- тремя точками, не лежащими на одной прямой;
- прямой и точкой, не принадлежащей этой прямой;
- двумя пересекающимися прямыми;
- двумя параллельными прямыми.
Взаимное расположение двух прямых в пространстве
- Две прямые называют пересекающимися, если они имеют только одну общую точку.
- Две прямые в пространстве называют параллельными, если они лежат в одной плоскости и не пересекаются.
- Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости.
Свойство параллельных прямых
Через две параллельные прямые проходит плоскость, и притом только одна.
Признак скрещивающихся прямых
Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся.
Параллельность в пространстве
Прямую и плоскость называют параллельными, если они не имеют общих точек. Две плоскости называют параллельными, если они не имеют общих точек.
Признак параллельности прямой и плоскости
Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.
Условия параллельности двух прямых в пространстве
- Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.
- Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, от личной от двух данных, то эта прямая параллельна каждой из двух данных прямых.
- Две прямые, параллельные третьей прямой, параллельны между собой.
Признак параллельности двух плоскостей
Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.
Свойства параллельных плоскостей
Через точку в пространстве, не принадлежащую данной плоскости, проходит плоскость, параллельная данной плоскости, и притом только одна.
Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны.
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
| Рекомендую подробно изучить предметы: | 
| 
 | 
| Ещё лекции с примерами решения и объяснением: | 
- Перпендикулярность в пространстве
- Векторы и координаты в пространстве
- Множества
- Рациональные уравнения
- Числовые последовательности
- Предел числовой последовательности
- Предел и непрерывность числовой функции одной переменной
- Функции, их свойства и графики
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Параллельность прямых и плоскостей
 
Параллельность прямых и плоскостей. Параллельные прямые в пространстве.
Просмотр содержимого документа 
«Параллельность прямых и плоскостей»
Л.С. Атанасян. Геометрия 10-11.
 
Три случая взаимного расположения прямых в пространстве
 
Две прямые на плоскости называются параллельными, если они не пересекаются.
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
 
Две прямые в пространстве называются параллельными, если
1) они лежат в одной плоскости и
2) не пересекаются
 
Прямые а и с не параллельны
После демонстрации этого слайда покажите пространственную модель (плоскость – картон, прямые – спицы)
 
Две параллельные прямые определяют плоскость.
(определение параллельных прямых)
 
Два отрезка называются параллельными, если они лежат на параллельных прямых.
Отрезок FL параллелен
 
Точки М, N, P и Q – середины отрезков BD, CD, AB и АС.
Л.С. Атанасян. Геометрия 10-11. № 17.
 
Повторим. ПЛАНИМЕТРИЯ. Аксиома параллельности.
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Аксиома параллельности поможет доказать теорему о параллельных прямых
 
Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Прямая и не лежащая
на ней точка определяют плоскость
 
Повторим. Следствие из аксиомы параллельности.
Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
a II b , c b c a
Это следствие из аксиомы параллельности поможет доказать лемму о параллельных прямых
 
Если одна из двух параллельных прямых
пересекает данную плоскость, то и другая
прямая пересекает данную плоскость.
 
Плоскости и имеют общую точку М, значит они пересекаются по прямой (А 3 )
Прямая р лежит в плоскости
и пересекает прямую а в т. М.
Поэтому она пересекает и
параллельную ей прямую b
в некоторой точке N .
Прямая р лежит также в плоскости , поэтому N – точка плоскости .
Значит, N – общая точка прямой b и плоскости .
 
Прямые, содержащие стороны АВ и ВС параллелограмма A ВС D пересекают плоскость . Докажите, что прямые AD и DC также пересекают плоскость .
Л.С. Атанасян. Геометрия 10-11. № 1 9 .
Каково взаимное расположение точек О, Р, М, N ?
 
Повторим. Следствие из аксиомы параллельности.
Если две прямые параллельны третьей прямой, то они параллельны.
a II с , b II с a II b
Аналогичное утверждение имеет место и для трех прямых в пространстве.
 
Если две прямые параллельны третьей прямой, то они параллельны.
Докажем, что a II b
- Лежат в одной плоскости
- не пересекаются
1) Точка К и прямая а определяют плоскость.
Докажем, что прямая b лежит в этой плоскости.
Допустим, что прямая b пересекает плоскость . Тогда по лемме с также пересекает . По лемме и а также пересекает . Это невозможно, т.к. а лежит в плоскости
2) Используя метод от противного объясните почему прямые а и b не пересекаются.
 
Дано: АА 1 II СС 1 , АА 1 II ВВ 1 , ВВ 1 = СС 1
Доказать, что В 1 С 1 = ВС
«Дидактические материалы по геометрии для 10 класса». Зив Б.Г.
 
Дано: А 1 С 1 = АС, А 1 С 1 II АС, А 1 В 1 = АВ,
Доказать, что C С 1 = В B 1
«Дидактические материалы по геометрии для 10 класса». Зив Б.Г.
 
Треугольник АВС и квадрат А EFC не лежат в одной
плоскости. Точки К и М – середины отрезков АВ и ВС соответственно. Докажите, что КМ II EF .
Найдите КМ, если АЕ=8см.
«Математика. Самостоятельные м контрольные работы по геометрии для 11 класса». Ершова А.П., Голобородько В.В.
 
Квадрат АВС D и трапеция KMNL не лежат в одной
плоскости. Точки A и D – середины отрезков KM и NL соответственно. Докажите, что К L II BC .
Найдите BC , если KL = 10 см , MN = 6 см.
«Математика. Самостоятельные м контрольные работы по геометрии для 11 класса». Ершова А.П., Голобородько В.В.
 
Отрезок АВ не пересекается с плоскостью . Через концы отрезка АВ и его середину (точку М) проведены параллельные прямые, пересекающие плоскость в точках А 1 , В 1 и М 1 . а) Докажите, что точки А 1 , В 1 и М 1 лежат на одной прямой. б) Найдите АА 1 , если ВВ 1 = 12см, ММ 1 =8см.
«Математика. Самостоятельные м контрольные работы по геометрии для 11 класса». Ершова А.П., Голобородько В.В.
🔍 Видео
№12. Точки А, В, С, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точкиСкачать

Доказать, что точки лежат в одной плоскости - bezbotvyСкачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Параллельность прямой и плоскости. 10 класс.Скачать

10 класс, 3 урок, Некоторые следствия из аксиомСкачать

Параллельность прямых. Практическая часть. 10 класс.Скачать

10 класс, 10 урок, Параллельные плоскостиСкачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

10 класс, 7 урок, Скрещивающиеся прямыеСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

10 класс, 2 урок, Аксиомы стереометрииСкачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

№4. Точки А, В, С и D не лежат в одной плоскости, а) Могут ли какие-то три изСкачать

№15. Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскостиСкачать















































































































