Этот онлайн калькулятор позволит вам очень просто найти значение координат вектора по двум точкам (зная его начальную и конечную точку) для плоских и пространственных задач.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на определение координат вектора по двум точкам и закрепить пройденый материал.
- Калькулятор для вычисления координат вектора по двум точкам
- Инструкция использования калькулятора для вычисления координат вектора по двум точкам
- Ввод даных в калькулятор для вычисления координат вектора по двум точкам
- Дополнительные возможности калькулятора для вычисления координат вектора по двум точкам
- Теория. Координаты вектора по двум точкам
- Скалярное произведение векторов
- Решение задач по математике онлайн
- Калькулятор онлайн. Длина вектора. Модуль вектора.
- Немного теории.
- Скалярные и векторные величины
- Определение вектора
- Проекция вектора на ось
- Проекции вектора на оси координат
- Направляющие косинусы вектора
- Линейные операции над векторами и их основные свойства
- Сложение двух векторов
- Произведение вектора на число
- Основные свойства линейных операций
- Теоремы о проекциях векторов
- Разложение вектора по базису
Калькулятор для вычисления координат вектора по двум точкам
Инструкция использования калькулятора для вычисления координат вектора по двум точкам
Ввод даных в калькулятор для вычисления координат вектора по двум точкам
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора для вычисления координат вектора по двум точкам
- Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.
Теория. Координаты вектора по двум точкам
Например, вектор AB , заданный в пространстве координатами точек A(A x , A y , A z ) и B(B x , B y , B z ) можно найти использовав формулу:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Скалярное произведение векторов
Скалярное произведение векторов также является скалярной величиной, вычислить ее значение можно, воспользовавшись формулой a х b = |a| х |b| х cos α. В ином варианте вычисление произведения векторов на плоскости осуществляется попарным умножением значений координат векторов a • b = ax х bx + ay х by. Например, для 2-х векторов с координатами a = и b = скалярное произведение будет равно 3 х 4 + 5 х 3 = 27.
В случае рассмотрения скалярного произведения векторов, которые располагаются в системе координат XYZ, a = и b = расчет выполняется по аналогичным плоскостному варианту формулам. a • b = ax х bx + ay х by + az х bz.
Например, для 2-х векторов с координатами a = и b = скалярное произведение будет равно 3 х 4 + 5 х 3 + 2 х 5 = 37.
Общая для n-мерного пространства формула расчета будет иметь вид: a • b = a1 х b1 + a2 х b2 + . + an х bn.
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Длина вектора. Модуль вектора.
Этот калькулятор онлайн вычисляет длину (модуль) вектора. Вектор может быть задан в 2-х и 3-х мерном пространстве.
Онлайн калькулятор для вычисления длины (модуля) вектора не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac )
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac )
Вычислить длину (модуль) вектора
Немного теории.
Скалярные и векторные величины
Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.
Определение вектора
Любая упорядоченная пара точек А к В пространства определяет направленный отрезок, т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В — его концом. Направлением отрезка считают направление от начала к концу.
Определение
Направленный отрезок называется вектором.
Будем обозначать вектор символом ( overrightarrow ), причем первая буква означает начало вектора, а вторая — его конец.
Вектор, у которого начало и конец совпадают, называется нулевым и обозначается ( vec ) или просто 0.
Расстояние между началом и концом вектора называется его длиной и обозначается ( |overrightarrow| ) или ( |vec| ).
Нулевой вектор будем считать направленным одинаково с любым вектором; длина его равна нулю, т.е. ( |vec| = 0 ).
Теперь можно сформулировать важное понятие равенства двух векторов.
Определение
Векторы ( vec ) и ( vec ) называются равными (( vec = vec )), если они коллинеарны, одинаково направлены и их длины равны.
Проекция вектора на ось
Пусть в пространстве заданы ось ( u ) и некоторый вектор ( overrightarrow ). Проведем через точки А и В плоскости, перпендикулярные оси ( u ). Обозначим через А’ и В’ точки пересечения этих плоскостей с осью (см. рисунок 2).
Проекцией вектора ( overrightarrow ) на ось ( u ) называется величина А’В’ направленного отрезка А’В’ на оси ( u ). Напомним, что
( A’B’ = |overrightarrow| ) , если направление ( overrightarrow ) совпадает c направлением оси ( u ),
( A’B’ = -|overrightarrow| ) , если направление ( overrightarrow ) противоположно направлению оси ( u ),
Обозначается проекция вектора ( overrightarrow ) на ось ( u ) так: ( Пр_u overrightarrow ).
Теорема
Проекция вектора ( overrightarrow ) на ось ( u ) равна длине вектора ( overrightarrow ) , умноженной на косинус угла между вектором ( overrightarrow ) и осью ( u ) , т.е. ( Пр_u overrightarrow = |overrightarrow|cos varphi ) где ( varphi ) — угол между вектором ( overrightarrow ) и осью ( u ).
Замечание
Пусть ( overrightarrow=overrightarrow ) и задана какая-то ось ( u ). Применяя к каждому из этих векторов формулу теоремы, получаем
( Пр_u overrightarrow = Пр_u overrightarrow )
т.е. равные векторы имеют равные проекции на одну и ту же ось.
Проекции вектора на оси координат
Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор ( overrightarrow ). Пусть, далее, ( X = Пр_u overrightarrow, ;; Y = Пр_u overrightarrow, ;; Z = Пр_u overrightarrow ). Проекции X, Y, Z вектора ( overrightarrow ) на оси координат называют его координатами. При этом пишут
( overrightarrow = (X;Y;Z) )
Теорема
Каковы бы ни были две точки A(x1; y1; z1) и B(x2; y2; z2), координаты вектора ( overrightarrow ) определяются следующими формулами:
Замечание
Если вектор ( overrightarrow ) выходит из начала координат, т.е. x2 = x, y2 = y, z2 = z, то координаты X, Y, Z вектора ( overrightarrow ) равны координатам его конца:
X = x, Y = y, Z = z.
Направляющие косинусы вектора
Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
( cos^2 alpha + cos^2 beta + cos^2 gamma = 1 )
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.
Линейные операции над векторами и их основные свойства
Сложение двух векторов
Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора ( vec,;; vec, ;; vec ). Сложив ( vec ) и ( vec ), получим вектор ( vec + vec ). Прибавив теперь к нему вектор ( vec ), получим вектор ( vec + vec + vec )
Произведение вектора на число
Основные свойства линейных операций
1. Переместительное свойство сложения
( vec + vec = vec + vec )
3. Сочетательное свойство умножения
( lambda (mu vec) = (lambda mu) vec )
4. Распределительное свойство относительно суммы чисел
( (lambda +mu) vec = lambda vec + mu vec )
5. Распределительное свойство относительно суммы векторов
( lambda ( vec+vec) = lambda vec + lambda vec )
Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».
Теоремы о проекциях векторов
Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
( Пр_u (vec + vec) = Пр_u vec + Пр_u vec )
Теорему можно обобщить на случай любого числа слагаемых.
Разложение вектора по базису
Пусть векторы ( vec, ; vec, ; vec ) — единичные векторы осей координат, т.e. ( |vec| = |vec| = |vec| = 1 ), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов ( vec, ; vec, ; vec ) называется базисом.
Имеет место следующая теорема.
Теорема
Любой вектор ( vec ) может быть единственным образом разложен по базису ( vec, ; vec, ; vec; ), т.е. представлен в виде
( vec = lambda vec + mu vec + nu vec )
где ( lambda, ;; mu, ;; nu ) — некоторые числа.