- Понятие о параллельных прямых
- Теоремы о параллельности двух прямых
- Свойства параллельных прямых в пространстве
- Пример задачи о параллельных прямых
- Взаимное расположение двух прямых в пространстве. Признак скрещивающихся прямых. Угол между скрещивающимися прямыми
- Взаимное расположение двух прямых в пространстве
- Признак скрещивающихся прямых
- Угол между скрещивающимися прямыми
- Параллельные прямые в пространстве. Параллельность трех прямых
- 🔥 Видео
Видео:Параллельность прямых. 10 класс.Скачать
Понятие о параллельных прямых
Прямые (a) и (b) являются параллельными в трехмерном пространстве только в том случае, если они находятся в одной плоскости и не пересекаются.
Если рассмотреть примеры, то параллельные прямые мы можем наблюдать как противоположные края у прямоугольного или квадратного стола, железнодорожные рельсы и шпалы, провода линий электропередач, линии в тетради в полоску и прочее. Таких примеров из реального мира можно привести очень много.
Другими вариантами прямых, расположенных в 3D-пространстве, есть их скрещивание и пересечение. Пересекающимися есть прямые, имеющие общую точку, она же и есть точкой пересечения. Скрещивающимися есть прямые, расположенные в разных плоскостях и не параллельные между собой.
Есть ряд теорем, описывающих поведение параллельных прямых в пространстве. Рассмотрим их подробнее.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Теоремы о параллельности двух прямых
- если две прямые в пространстве перпендикулярные к одной плоскости, то они параллельные между собой;
- через точку в пространстве, что не расположена на заданной прямой, возможно провести лишь одну прямую, параллельную заданной.
Доказательство теоремы : Через прямую a и точку (M) , не находящуюся на данной прямой, проведем плоскость ∝. Эта плоскость определяется заданной прямой a и точкой (M) , то есть она однозначно определена.
Для доказательства этой теоремы применим евклидовую аксиому из планиметрии про параллельные прямые.
Таким образом, через точку (M) возможно проложить лишь одну прямую, параллельную прямой (a) , и ее существование доказано. Назовем эту прямую (b) .
Два отрезка будут параллельными при их расположении на параллельных прямых.
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Свойства параллельных прямых в пространстве
Некоторые свойства пересекаются с вышеизложенными теоремами, но все же рассмотрим их все:
- имея две параллельных прямых, одна из которых параллельная третьей прямой, можно утверждать, что вторая тоже будет параллельна третьей;
- если из двух параллельных прямых одна пересекает некую плоскость, то и вторая так же будет ее пересекать. Это свойство является леммой про две параллельные прямые в пространстве, ее применяют при обоснованиях различных геометрических теорем;
- при помощи двух параллельных прямых можно изобразить однозначно заданную плоскость;
- через любую точку, находящуюся в 3D-пространстве и не расположенную на заданной прямой, возможно провести лишь одну прямую, что параллельна заданной.
Рассмотрим подробнее лемму про параллельные прямые и докажем ее. К примеру, некая прямая (b) пересекает плоскость (∝) в точке (M) , что расположена на заданной плоскости. Параллельные прямые a и образуют некую плоскость (β) . Таким образом, если точка (M) общая для плоскостей (∝) и (β) , то эти плоскости пересекаются, линию пересечения обозначим c, на ней расположена точка (M) .
Все прямые (a) , (b) и (c) расположены в плоскости (β) .
Не нашли что искали?
Просто напиши и мы поможем
В соответствии с аксиомой планиметрии, при пересечении одной из параллельных прямых третьей прямой, вторая так же будет ее пересекать.
В нашем варианте прямая a пересекает прямую c в точке (K) .
Точка (K) расположена одновременно на прямой a и на плоскости (∝) , значит она есть общей для них. Таким образом, прямая a пересекает плоскость (∝) .
Видео:Параллельность прямой и плоскости. 10 класс.Скачать
Пример задачи о параллельных прямых
Заданы прямые (a) и (b) , описывающиеся уравнениями. Определить, параллельны ли заданные прямые.
(a: == ) ;
При совпадении прямых или если они параллельны их направляющие векторы (s_1) и ( s_2) будут коллинеарными, таким образом, их координаты будут иметь следующее соотношение:
Для того, чтобы найти направляющие вектора, воспользуемся каноническими уравнениями, таким образом для прямой a вектор (s_1) будет равен .
Для прямой b найдем направляющий вектор при помощи произведения нормальных векторов плоскостей, на которых он расположен:
Таким образом, соблюдается вышеуказанное условие, значит эти прямые либо параллельны, либо совпадают. Необходимо определить каковыми именно они являются: параллельны или совпадают. Возьмем некую точку (K) с координатами (1;2;-1), находящуюся на прямой a, и подставим ее координаты в уравнение прямой (b) :
1-2+1+1=0;1=0,
Равенство не выполняется, таким образом, точка (K) не расположена на прямой (b) , а это означает, что прямые (a) и (b) не совпадают, соответственно они параллельны.
Видео:10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать
Взаимное расположение двух прямых в пространстве.
Признак скрещивающихся прямых.
Угол между скрещивающимися прямыми
Взаимное расположение двух прямых в пространстве |
Признак скрещивающихся прямых |
Угол между скрещивающимися прямыми |
Видео:Теорема 13.2 Если две прямые параллельны третьей, то они параллельны ||Геометрия 7 класс||Скачать
Взаимное расположение двух прямых в пространстве
Все возможные случаи взаимного расположения двух прямых в пространстве представлены в следующей таблице.
Фигура | Рисунок | Определение |
Две пересекающиеся прямые | Две прямые называют пересекающимися прямыми , если они имеют единственную общую точку. | |
Две параллельные прямые | Две прямые называют параллельными прямыми , если они лежат в одной плоскости и не имеют общих точек | |
Две скрещивающиеся прямые | Две прямые называют скрещивающимися прямыми , если не существует плоскости, содержащей обе прямые. |
Две пересекающиеся прямые |
Две прямые называют пересекающимися прямыми , если они имеют единственную общую точку.
Две прямые называют параллельными прямыми , если они лежат в одной плоскости и не имеют общих точек
Две прямые называют скрещивающимися прямыми , если не существует плоскости, содержащей обе прямые.
С перечисленными в предыдущей таблице случаями взаимного расположения двух прямых в пространстве близко связаны утверждения, представленные в следующей таблице.
Фигура | Рисунок | Тип утверждения и формулировка |
Две различные точки | Аксиома о прямой линии, заданной двумя точками Через две различные точки проходит одна и только одна прямая линия. | |
Прямая линия и точка, не лежащая на этой прямой | Аксиома о параллельных прямых Через точку, не лежащую на прямой,проходит одна и только одна прямая, параллельная этой прямой. | |
Две пересекающиеся прямые | Теорема о плоскости, определяемой двумя пересекающимися прямыми Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые. | |
Две параллельные прямые | Теорема о плоскости, определяемой двумя параллельными прямыми Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые. |
Две различные точки |
Аксиома о прямой линии, заданной двумя точками
Через две различные точки проходит одна и только одна прямая линия.
Аксиома о параллельных прямых
Через точку, не лежащую на прямой,проходит одна и только одна прямая, параллельная этой прямой.
Теорема о плоскости, определяемой двумя пересекающимися прямыми
Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Теорема о плоскости, определяемой двумя параллельными прямыми
Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Видео:10 класс, 5 урок, Параллельность трех прямыхСкачать
Признак скрещивающихся прямых
Признак скрещивающихся прямых . Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются (рис.1).
Доказательство . Напомним, что две прямые называют скрещивающимися, если не существует плоскости, содержащей обе эти прямые, и будем доказывать признак скрещивающихся прямых методом «От противного».
Для этого предположим, что прямая a , пересекающая плоскость в точке K , и прямая b , лежащая в плоскости α (рис. 1), не являются скрещивающимися. Из этого предположения следует, что существует плоскость, содержащая обе эти прямые. Обозначим эту плоскость буквой β и докажем, что плоскость β совпадает с плоскостью α . Действительно, поскольку обе плоскости α и β проходят через прямую b и точку K , не лежащую на этой прямой, то они совпадают. Следовательно, прямая a лежит в плоскости прямая a лежит в плоскости . Мы получили противоречие с тем, что по условию прямая a пересекает плоскость прямая a пересекает плоскость , а не лежит в ней. Доказательство признака скрещивающихся прямых завершено.
Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать
Угол между скрещивающимися прямыми
На рисунке 2 изображены скрещивающиеся прямые a и b . Прямая a’ параллельна прямой a , прямая b’ параллельна прямой b. Прямые a’ и b’ пересекаются. Угол φ и является углом между скрещивающимися прямыми a и b .
Для того, чтобы найти угол между прямыми AB1 и BC1 , проведем в кубе диагональ боковой грани AD1 и диагональ верхнего основания D1B1 (рис. 4).
Замечание . Для более глубокого усвоения понятия «Скрещивающиеся прямые» рекомендуем ознакомиться с разделами нашего сайта «Свойства скрещивающихся прямых» и «Взаимное расположение прямой и плоскости в пространстве. Признак параллельности прямой и плоскости».
Видео:Взаимное расположение прямых в пространстве. 10 класс.Скачать
Параллельные прямые в пространстве. Параллельность трех прямых
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы дадим основные определения и теоремы на тему параллельных прямых в пространстве.
В начале урока рассмотрим определение параллельных прямых в пространстве и докажем теорему о том, что через любую точку пространства можно провести только одну прямую, параллельную данной. Далее докажем лемму о двух параллельных прямых, пересекающих плоскость. И с ее помощью докажем теорему о двух прямых, параллельных третьей прямой.
🔥 Видео
10 класс, 7 урок, Скрещивающиеся прямыеСкачать
Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать
Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
7 класс, 25 урок, Признаки параллельности двух прямыхСкачать
7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
10 класс - Геометрия - Скрещивающиеся прямыеСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
№41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямойСкачать
Параллельность прямых. Практическая часть. 10 класс.Скачать
Геометрия 10 класс (Урок№8 - Перпендикулярность прямой и плоскости.)Скачать
Параллельность прямых в пространстве. 10 класс. Погорелов А. В.Скачать