Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ = 14, SQ = 4 .

Поскольку ∠QPS = ∠QPM = ∠MNQ = ∠QNP (см. рис.), треугольник PQS подобен треугольнику NQP по двум углам (угол при вершине Q общий). Поэтому Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Пусть NS = x. Тогда Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Из этого уравнения находим, что x = 45.

Видео:Геометрия Доказать, что если в четырехугольнике диагонали лежат на биссектрисах его углов, то такойСкачать

Геометрия Доказать, что если в четырехугольнике диагонали лежат на биссектрисах его углов, то такой

Все, что нужно знать о свойствах четырехугольников

В этой статье мы рассмотрим все основные свойства и признаки четырехугольников.

Для начала я расположу все виды четырехугольников в виде такой сводной схемы:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходитСхема замечательна тем, что четырехугольники, стоящие в каждой строке обладают ВСЕМИ СВОЙСТВАМИ ЧЕТЫРЕХУГОЛЬНИКОВ, РАСПОЛОЖЕННЫХ НАД НИМИ. Поэтому запоминать надо совсем немного.

Трапеция — это четырехугольник, две стороны которого параллельны, а две другие не параллельны. Параллельные стороны называются основаниями трапеции, а не параллельные — боковыми сторонами.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит1. В трапеции сумма углов, прилежащих к боковой стороне равна 180°: А+В=180°, C+D=180°

2. Биссектриса любого угла трапеции отсекает на ее основании отрезок, равный боковой стороне: Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

3. Биссектрисы смежных углов трапеции пересекаются под прямым углом.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

4.Трапеция называется равнобедренной, если ее боковые стороны равны:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходитВ равнобедренной трапеции

  • углы при основании равны,
  • проекции боковых сторон на основание равны: Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит.

5. Площадь трапеции равна произведению полусуммы оснований на высоту:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Параллелограм — это четырехугольник, у которого противоположные стороны попарно параллельны: Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходитВ параллелограмме:

  • противоположные стороны и противоположные углы равны
  • диагонали параллелограмма делятся точкой пересечения пополам:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Соответственно, если четырехугольник обладает этими свойствами, то он является параллелограммом.

Площадь параллелограмма равна произведению основания на высоту:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

или произведению сторон на синус угла между ними:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Ромб — это параллелограмм, у которого все стороны равны:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

  • противоположные углы равны
  • диагонали точкой пересечения делятся пополам
  • диагонали взаимно перпендикулярны
  • диагонали ромба являются биссектрисами углов

Площадь ромба равна половине произведения диагоналей:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходитЕсли в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

или произведению квадрата стороны на синус угла между сторонами:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Прямоугольник — это параллелограмм, у которого все углы прямые:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

  • Диагонали прямоугольника равны.
  • Диагонали точкой пересечения делятся пополам.

Площадь прямоугольника равна произведению его сторон:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит.

Квадрат — это прямоугольник, у которого все стороны равны

Квадрат — это ромб, у которого все углы прямые.

Соответственно: квадрат обладает свойствами ромба и прямоугольника:

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

  • все углы равны 90 градусов
  • диагонали точкой пересечения делятся пополам
  • диагонали взаимно перпендикулярны
  • диагонали являются биссектрисами углов
  • диагонали равны

Площадь квадрата равна квадрату его стороны.

Площадь квадрата равна половине произведения диагоналей.

И.В. Фельдман, репетитор по математике.Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходитОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходитНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходитСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Ромб – это параллелограмм, у которого все стороны равны.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Если в четырехугольнике одна из диагоналей является биссектрисой угла из которого она выходит

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

🔍 Видео

№497. Одна из диагоналей параллелограмма является его высотой. Найдите эту диагональ, если периметрСкачать

№497. Одна из диагоналей параллелограмма является его высотой. Найдите эту диагональ, если периметр

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

№405. В ромбе одна из диагоналей равна стороне. Найдите: а) углы ромба; б) углы,Скачать

№405. В ромбе одна из диагоналей равна стороне. Найдите: а) углы ромба; б) углы,

Геометрия Признак параллелограмма: Если в четырехугольнике диагонали точкой пересечения делятсяСкачать

Геометрия Признак параллелограмма: Если в четырехугольнике диагонали точкой пересечения делятся

Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Задание 26 Вписанный четырёхугольникСкачать

Задание 26 Вписанный четырёхугольник

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.

Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрииСкачать

Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрии

ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналямиСкачать

ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналями

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Геометрия Доказательство Диагонали ромба перпендикулярны и являются биссектрисами его угловСкачать

Геометрия Доказательство Диагонали ромба перпендикулярны и являются биссектрисами его углов

№408. Докажите, что параллелограмм является ромбом, если: а) его диагонали взаимноСкачать

№408. Докажите, что параллелограмм является ромбом, если: а) его диагонали взаимно

Свойства диагоналей #какзапомнить #свойствадиагоналей #четырехугольникиСкачать

Свойства диагоналей #какзапомнить #свойствадиагоналей #четырехугольники

8 класс. Геометрия. Четырехугольник: вершины, стороны, диагонали. Свойства параллелограмма. Урок #1Скачать

8 класс. Геометрия. Четырехугольник: вершины, стороны, диагонали. Свойства параллелограмма. Урок #1

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Геометрия. 8 Класс. Урок 4 "Удвоение медианы"Скачать

Геометрия. 8 Класс. Урок 4 "Удвоение медианы"

ОГЭ математика 2022 Все задания 17 (бывшие 18) Ященко 50 вариантов.Скачать

ОГЭ математика 2022  Все задания 17 (бывшие 18) Ященко 50 вариантов.
Поделиться или сохранить к себе: