Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .
Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.
Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.
Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).
AH = AE, BF = BE, CF = CG, DH = DG,
Складывая эти равенства, получим:
AH + BF + CF + DH = 
= AD + BC, 
AE + BE + CG + DG = 
= AB + CD,
то справедливо равенство
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.
Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству
и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).
Следовательно, справедливы равенства
из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:
Окружность касается касается стороны BC (рис.4).
В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.
Окружность не касается стороны BC .
В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:
-  Точка K лежит между точками C и D (рис.5)
Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:
Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.
Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.
Итак, возможен и реализуется лишь случай 1.
Из доказательства теоремы 2 непосредственно вытекает
Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.
Примеры описанных четырёхугольников
| Фигура | Рисунок | Утверждение | 
| Ромб |  | В любой ромб можно вписать окружность | 
| Квадрат |  | В любой квадрат можно вписать окружность | 
| Прямоугольник |  | В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом | 
| Параллелограмм |  | В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом | 
| Дельтоид |  | В любой дельтоид можно вписать окружность | 
| Трапеция |  | В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований | 
| Ромб | 
|  | 

В любой квадрат можно вписать окружность

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом


В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Видео:Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащихСкачать

Если в четырехугольник можно вписать окружность то сумма длин двух его противоположных
Периметр четырехугольника, описанного около окружности, равен 24, две его стороны равны 5 и 6. Найдите большую из оставшихся сторон.
В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. В этом случае периметр четырехугольника вдвое больше суммы длин противоположных сторон, следовательно, в данном четырехугольнике сумма длин противоположных сторон равна 12, а значит, стороны длиной 5 и 6 не могут быть противоположными и являются смежными.
Напротив стороны длиной 5 лежит сторона длиной 12 − 5 = 7. Напротив стороны длиной 6 лежит сторона длиной 12 − 6 = 6. Большая из этих двух сторон имеет длину 7.
Видео:№695. Сумма двух противоположных сторон описанного четырехугольника равна 15 см. НайдитеСкачать

Вписанная окружность
Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.
Окружность, точно можно вписать в такие геометрические фигуры, как:
- Треугольник
- Выпуклый, правильный многоугольник
- Квадрат
- Равнобедренная трапеция
- Ромб
В четырехугольник, можно вписать окружность, 
только при условии, что суммы длин 
противоположных сторон равны.
Во все вышеперечисленные фигуры 
окружность, может быть вписана, только один раз.
Окружность невозможно вписать в прямоугольник 
и параллелограмм, так как окружность не будет 
соприкасаться со всеми сторонам этих фигур.
Геометрические фигуры, в которые вписана окружность, 
называются описанными около окружности.
Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.
Описанный четырехугольник — это четырехугольник, который описан 
около окружности и все четыре его стороны соприкасаются с окружностью.
Свойства вписанной окружности
В треугольник
- В любой треугольник может быть вписана окружность, причем только один раз.
- Центр вписанной окружности — точка пересечения биссектрис треугольника.
- Вписанная окружность касается всех сторон треугольника.
- Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c) cdot r = pr ]
p — полупериметр четырехугольника. 
r — радиус вписанной окружности четырехугольника.
окружность и любая из сторон треугольника.
перпендикуляры к любой точке касания.
треугольника на 3 пары равных отрезков.
Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:
с — расстояние между центрами вписанной и описанной окружностей треугольника. 
R — радиус описанной около треугольника. 
r — радиус вписанной окружности треугольника.
В четырехугольник
- Не во всякий четырехугольник можно вписать окружность.
- Если у четырехугольника суммы длин его противолежащих 
 сторон равны, то окружность, может быть, вписана (Теорема Пито).
- Центр вписанной окружности и середины двух 
 диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
- Точка пересечения биссектрис — это центр вписанной окружности.
- Точка касания — это точка, в которой соприкасается 
 окружность и любая из сторон четырехугольника.
- Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c+d)cdot r = pr ]
p — полупериметр четырехугольника. 
r — радиус вписанной окружности четырехугольника.
равноудалены от этой конца и начала этой стороны, то есть от его вершин.
Примеры вписанной окружности
- Треугольник 
- Четырехугольник 
- Многоугольник 
Примеры описанного четырехугольника: 
равнобедренная трапеция, ромб, квадрат.
Примеры описанного треугольника: 
равносторонний, равнобедренный, 
прямоугольный треугольники.
Верные и неверные утверждения
- Радиус вписанной окружности в треугольник и радиус вписанной 
 в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
- Любой параллелограмм можно вписать в окружность. Неверное утверждение.
- В любой четырехугольник можно вписать окружность. Неверное утверждение.
- В любой ромб можно вписать окружность. Верное утверждение.
- Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
- Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
- Угол вписанный в окружность равен соответствующему центральному 
 углу опирающемуся на ту же дугу. Неверное утверждение.
- Радиус вписанной окружности в прямоугольный треугольник равен 
 половине разности суммы катетов и гипотенузы. Верное утверждение.
- Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
- Вписанная окружность в треугольник имеет в общем 
 три общие точки со всеми сторонами треугольника. Верное утверждение.
Окружность вписанная в угол
Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.
Центр окружности, которая вписана в угол, 
расположен на биссектрисе этого угла.
К центру окружности вписанной в угол, можно провести, 
в общей сложности два перпендикуляра со смежных сторон.
Длина диаметра, радиуса, хорды, дуги вписанной окружности 
измеряется в км, м, см, мм и других единицах измерения.
🔥 Видео
Если в четырёхугольник можно вписать окружностьСкачать

Описанный четырехугольникСкачать

ОГЭ Задание 25 Свойства вписанного и описанного четырехугольникаСкачать

№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиусСкачать

Свойство четырехугольника, в который можно вписать окружностьСкачать

№699. Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадьСкачать

Свойство четырехугольника, в который можно вписать окружностьСкачать

ОГЭ Задание 25 Доказательство от противногоСкачать

Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описатьСкачать

Шпаргалка к ЕГЭ по математике. Задание 6. Четырехугольник и окружность.Скачать

8 класс. Четырехугольник и окружностьСкачать

Описанный четырехугольник, сумма противоположных сторонСкачать

Вписанный в окружность четырёхугольник.Скачать

Урок 1. Вписанная окружность в четырехугольник. Теория+ практикаСкачать

Геометрия 2. Четырехугольники и окружностиСкачать

Окружность, вписанная в четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольникСкачать

Математика ОГЭ Задание 25 Признак описанного четырёхугольникаСкачать











