Какие из следующих утверждений верны?
1) Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.
2) Если радиусы двух окружностей равны 5 и 7, а расстояние между их центрами равно 3, то эти окружности не имеют общих точек.
3) Если радиус окружности равен 3, а расстояние от центра окружности до прямой равно 2, то эти прямая и окружность пересекаются.
4) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.» — неверно, вписанные углы, опирающиеся на одну и ту же хорду окружности, равны, если их вершины лежат по одну сторону от хорды.
2) «Если радиусы двух окружностей равны 5 и 7, а расстояние между их центрами равно 3, то эти окружности не имеют общих точек.» — неверно, окружности имеют две общие точки.
3) «Если радиус окружности равен 3, а расстояние от центра окружности до прямой равно 2, то эти прямая и окружность пересекаются.» — верно, если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность имеют две общие точки.
4) «Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается.
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
ГДЗ учебник по математике 6 класс Бунимович. 18. Две окружности на плоскости. Номер №296
Радиусы двух окружностей равны 3 см и 5 см, а расстояние между наиболее удаленными точками:
а) 18 см;
б) 16 см;
в) 13 см;
г) 8 см.
Найдите расстояние между центрами окружностей.
Подсказка. Выполните построение или воспользуйтесь рисунками 5 . 6 − 5 . 8 .
Решение а
18 − 3 − 5 = 10 (см) − расстояние между центрами окружностей.
Ответ: 10 см
Решение б
16 − 3 − 5 = 8 (см) − расстояние между центрами окружностей.
Ответ: 8 см
Решение в
13 − 3 − 5 = 5 (см) − расстояние между центрами окружностей.
Ответ: 5 см
Решение г
8 − 3 − 5 = 0 (см) − расстояние между центрами окружностей, то есть окружности концентрические.
Ответ: 0 см, окружности концентрические.
Видео:ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать
Всё про окружность и круг
Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.
Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.
Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2
Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.
Квадрат касательной равен произведению секущей на ее внешнюю часть
Центральный угол — это угол, вершина которого совпадает с центром окружности.
Дугой называется часть окружности, заключенная между двумя точками.
Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.
Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.
Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.
Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.
Периметр сектора: P = s + 2R.
Площадь сектора: S = Rs/2 = ПR 2 а/360°.
Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.
📽️ Видео
9 класс, 8 урок, Взаимное расположение двух окружностейСкачать
Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)Скачать
Радиус и диаметрСкачать
Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностейСкачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Взаимное расположение двух окружностей. Урок 8. Геометрия 9 классСкачать
Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Найти центр и радиус окружностиСкачать
Длина окружности. Площадь круга - математика 6 классСкачать
Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать
Длина окружности. Математика 6 класс.Скачать
Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Планиметрия 5 | mathus.ru | расстояние между центрами окружностей в параллелограммеСкачать
Задача на нахождение длины хорды окружностиСкачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Геометрия 16-09. Взаимное расположение двух и более окружностей. Задача 9Скачать
ЕГЭ задание 16 Взаимное расположение окружностейСкачать