Выберите неверные утверждения и запишите в ответе их номера.
1) В любой треугольник можно вписать окружность.
2) Если при пересечении двух прямых третьей сумма соответственных углов равна 180°, то прямые всегда параллельны.
3) Каждая из биссектрис равнобедренного треугольника является его медианой.
1) Да, в любой треугольник можно вписать окружность, притом только одну.
2) Нет, если при пересечении двух прямых третьей прямой односторонние углы составляют в сумме 180°, то эти две прямые параллельны.
3) Нет, в равнобедренном треугольнике только биссектриса, проведённая к основанию, является медианой и высотой.
Значит, неверны второе и третье утверждения.
Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
Теорема о пересечении двух параллельных прямых третьей
Если две параллельные прямые пересекает третья, то образовавшиеся накрест лежащие углы равны, соответственные углы равны и сумма односторонних равна 180°. Доказательство — от противного. Предположим, что прямые AC и BD параллельны и пересечены секущей AB, но образовавшиеся накрест лежащие углы CAB и DBA не равны. Тогда отложим от луча BA новый угол ABE, равный углу CAB. Новый луч BE и дополнительный к нему луч проведены пунктиром — получилась пунктирная прямая BE. Два равных угла CAB и ABE — это накрест лежащие углы при пересечении двух прямых AC и BE секущей AB. По признаку параллельности прямых это значит, что прямая BE параллельна прямой AC. У нас получилось, что через точку B проходят сразу две прямые BD и BE, параллельные одной и той же третьей прямой AC. Этого быть не может, следовательно предположение неверно, и два накрест лежащих угла CAB и DBA всё-таки равны. ЧТД.
Видео:Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7Скачать
Прямая линия. Признаки параллельности прямых линий.
Если две произвольные прямые AB и СD пересечены третьей прямой MN, то образовавшиеся при этом углы получают попарно такие названия:
соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7;
внутренние накрест лежащие углы: 3 и 5, 4 и 6;
внешние накрест лежащие углы: 1 и 7, 2 и 8;
внутренние односторонние углы: 3 и 6, 4 и 5;
внешние односторонние углы: 1 и 8, 2 и 7.
Описанные углы видны на рисунке:
Теорема.
Если две параллельные прямые пересечены третьей прямой, то сформировавшиеся:
1. внутренние накрест лежащие углы одинаковы;
2. внешние накрест лежащие углы одинаковы;
3. соответственные углы одинаковы;
4. сумма внутренних односторонних углов будет 2d = 180 0 ;
5. сумма внешних односторонних углов будет 2d = 180 0 ;
Данную теорему иллюстрирует рисунок:
Имеются две параллельные прямые AB и СD, их пересекает третья прямая MN.
1. ∠ 4 = ∠ 6 и ∠ 3 = ∠ 5;
2. ∠ 2 = ∠ 8 и ∠ 1 = ∠ 7;
3. ∠ 2 =∠ 6, ∠ 1 = ∠ 5, ∠ 3 = ∠ 7, ∠ 4 = ∠ 8;
4. ∠ 3 + ∠ 6 = 2d и ∠ 4 + ∠ 5 = 2d;
5. ∠ 2 + ∠ 7 = 2d и ∠ 1 + ∠ 8 = 2d.
1. Из середины E того отрезка прямой MN, который размещается между параллельными прямыми, прочертим на СD перпендикуляр EK и продолжим его до пересечения с AB в точке L. Так как перпендикуляр к одной из параллельных есть также и перпендикуляр к другой параллельной, то образовавшиеся при этом треугольники (заштрихованные на чертеже) — оба прямоугольные. Они одинаковы, потому что в них по равной гипотенузе и по одинаковому острому углу при точке E. Из равенства треугольников получаем, что внутренние накрест лежащие углы 4 и 6 одинаковы. Два прочих внутренних накрест лежащих угла 3 и 5 одинаковы, как дополнения до 2d к одинаковым углам 4 и 6 (как смежные с 4 и 6).
2. Внешние накрест лежащие углы равны соответственно внутренним накрест лежащим углам, как углы вертикальные.
Так, ∠ 2 = ∠ 4 и ∠ 8 = ∠ 6, но по доказанному ∠ 4 = ∠ 6.
Следовательно, ∠ 2 =∠ 8.
3. Соответственные углы 2 и 6 одинаковы, поскольку ∠ 2 = ∠ 4, а ∠ 4 = ∠ 6. Также убедимся в равенстве других соответственных углов.
4. Сумма внутренних односторонних углов 3 и 6 будет 2d, потому что сумма смежных углов 3 и 4 равна 2d = 180 0 , а ∠ 4 можно заменить идентичным ему ∠ 6. Также убедимся, что сумма углов 4 и 5 равна 2d.
5. Сумма внешних односторонних углов будет 2d, потому что эти углы равны соответственно внутренним односторонним углам, как углы вертикальные.
Из выше доказанного обоснования получаем обратные теоремы.
Когда при пересечении двух прямых произвольной третьей прямой получим, что:
1. Внутренние накрест лежащие углы одинаковы;
или 2. Внешние накрест лежащие углы одинаковые;
или 3. Соответственные углы одинаковые;
или 4. Сумма внутренних односторонних углов равна 2d = 180 0 ;
или 5. Сумма внешних односторонних равна 2d = 180 0 ,
🎦 Видео
Параллельные прямые | Математика | TutorOnlineСкачать
СООТВЕТСТВЕННЫЕ УГЛЫ, параллельные прямые линии, секущая .Скачать
№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать
Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать
№211. Две параллельные прямые пересечены секущей. Докажите, что: а) биссектрисыСкачать
7 класс, 25 урок, Признаки параллельности двух прямыхСкачать
Параллельные прямые (задачи).Скачать
29. Теорема об углах, образованных двумя параллельными прямыми и секущейСкачать
Теорема о пересечении двух параллельных прямых третьейСкачать
Геометрия 7 класс. Углы с соответственно параллельными или перпендикулярнымСкачать
Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямымСкачать
Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)Скачать
7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонамиСкачать
Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать
Контрольная работа по теме: "Параллельные прямые" | Геометрия 7 классСкачать
29 Теоремы об углах, обр х двумя пар ми пр и секСкачать
Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельныСкачать