Эллипс циркулем через окружность

Чертежик

Метки

Эллипс циркулем через окружность

Эллипс циркулем через окружность

Видео:Как начертить овал. Эллипс вписанный в ромбСкачать

Как начертить овал. Эллипс вписанный в ромб

Построение овала

Рассмотрим построение овала двумя методами: окружности и параллелограмма.

Воспользуемся методом окружности.

1.) Начинаем чертить с построения осей.

Эллипс циркулем через окружность

2.) Чертим окружность Эллипс циркулем через окружность

3.) Чертим дуги ЕА и BD радиусом ЕС

Эллипс циркулем через окружность
Эллипс циркулем через окружность

4.) Чертим дуги ED и AB радиусом FB

Эллипс циркулем через окружность

Эллипс циркулем через окружность

Применим метод параллелограмма.

1.) Начинаем с построения осевых линий

Эллипс циркулем через окружность

2.) Чертим линии параллельные осевым линиям. Где d — диаметр окружности.

Эллипс циркулем через окружность3.) Строим дуги HB и DF радиусом HEЭллипс циркулем через окружностьЭллипс циркулем через окружность4.) Продолжаем с черчения дуги BD радиуса MB и дуги FH радиусом PHЭллипс циркулем через окружностьЭллипс циркулем через окружность

Применение построения овала на чертежах вы можете посмотреть здесь

Видео:ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61Скачать

ПОСТРОЕНИЕ ОВАЛА │ КАК НАЧЕРТИТЬ ОВАЛ ПРИ ПОСТРОЕНИИ АКСОНОМЕТРИИ │ Урок #61

Приемы построения эллипса

Эллипс может быть построен как лекальная и как циркульная кривая.

Лекальная кривая строится по точкам, которые затем плавно соединяются от руки или при помощи лекала (способ 1).

Циркульная кривая строится при помощи циркуля как кривая, состоящая из четырёх сопрягающихся дуг окружностей (способы 2, 3).

Рассмотрим построение эллипса в аксонометрической плоскости х’О’у’. Аналогичными будут построения в других плоскостях. Только необходимо учитывать ориентацию осей эллипса. Возьмём окружность произвольного радиуса и построим её прямоугольную изометрию и диметрию разными способами, заготовив предварительно треугольники пропорциональности (рис. 84).

Способ L Лекальная кривая. Строим аксонометрию по восьми точкам, которыми будут являться концы осей и сопряжённых диаметров.

Эллипс циркулем через окружность

Эллипс циркулем через окружность

В прямоугольной изометрии (рис. 85, а) приведённые коэффициенты искажения по всем осям равны 1. Поэтому на осях х’ и у’ от центра О‘ откладываем радиус 7? окружности, на оси г’ — малую полуось эллипса 0,717?, на прямой, перпендикулярной z’, — большую его полуось 1,22R.

Для определения размеров большой и малой полуосей эллипса откладываем на натуральной шкале (1:1) треугольника пропорциональности для изометрии радиус окружности R, и из точки А проецируем его на остальные шкалы. На верхней шкале получаем размер 1,227?, на нижней — 0,71 R.

В прямоугольной диметрии (рис. 85, 6) по осям х’ и z’ коэффициент искажения равен 7, по оси у-0,5. Поэтому на оси х’ откладываем радиус R. Остальные размеры определяем при помощи треугольника пропорциональности для диметрии. На натуральной шкале (1:1) откладываем радиус R и через точку А и конец этого отрезка проводим проецирующий луч. На шкале 0,5 получаем размер 0,57? для оси у на шкале 0,35 — размер 0,357? малой полуоси эллипса, который откладываем на z’. Размер 1,067? большой полуоси берём со шкалы 1,06 и откладываем его на прямой, перпендикулярной z’.

Полученные восемь точек в обоих случаях предпочтительнее соединить при помощи лекала.

Эллипс циркулем через окружность

Примечание. Размеры осей эллипса для прямоугольной изометрии можно определить и графически (рис. 86). Для этого из концов С и D взаимно перпендикулярных диаметров окружности проводим дуги радиусом CD до взаимного пересечения в точках А и В. Соединив точки А и В, получим большую ось эллипса, равную 1,22D, а отрезок CD будет его малой осью, равной 0,7 Ш.

Способ 2. Коробовая кривая. Коробовая кривая является циркульной кривой, состоящей из четырёх дуг окружностей (рис. 87). Ею можно заменить эллипс. Строится она по его осям.

На рис. 87 коробовая кривая построена в прямоугольной изометрии. Малая ось CD направлена вдоль аксонометрической оси z большая АВ ей перпендикулярна. Построение выполняем в определённой последовательности.

  • • Соединяем концы большой и малой полуосей (отрезок A Q.
  • • Находим разность большой и малой полуосей (отрезок СЕ). Для этого из центра О‘ радиусом О’А проводим дугу до пересечения с прямой, проходящей через CD, в точке Е.
  • • Откладываем СЕ от точки С на АС. Получаем точку F.
  • • Строим срединный перпендикуляр к отрезку AF и отмечаем точки пересечения его с прямыми линиями, проходящими через оси эллипса. 0 и 02 — центры двух дуг окружностей.

На рис. 88 построена прямоугольная диметрия окружности в плоскости x’O’z’ в виде коробовой кривой. Малая ось CD направлена вдоль оси у’ и равна 0,95D. Большая ось АВ ±у’ и равна 1,060. Последовательность построения та же, что была рассмотрена выше для изометрии.

Этот метод является универсальным и может применяться не только для построения аксонометрии окружности, но и любого эллипса или овала, если известны размеры его большой и малой оси, чем широко пользуются при конструировании технических деталей.

Способ 3. Овал. Построим прямоугольную изометрию окружности в плоскости х’О’у’, заменяя эллипс овалом (рис. 89)

Задаём аксонометрические оси х’, у’, z’ и направление большой оси эллипса (перпендикулярно z’). Из центра эллипса проводим окружность радиусом, равным радиусу той окружности, аксонометрию которой строим. На пересечении этой окружности с направлением малой оси эллипса (осью z’) получаем два центра дуг 0 и 02. Проводим прямые через 0 и точки Е, L (или через 02 и точки К, F) пересечения окружности с осями х’, у’. На пересечении их с направлением большой оси получаем ещё два центра — 03 и 04. Затем последовательно проводим из центра 0 дугу EL радиусом 0Е, из центра 04 — дугу LF радиусом Оф?, из 02 — дугу FK радиусом 02F, из 03 — дугу КЕ радиусом 02К. Построенный овал неточно повторяет форму эллипса. У них имеются небольшие расхождения в размерах. Таким приёмом можно построить овал только в прямоугольной изометрии.

На рис. 90 показано построение овала, заменяющего эллипс в прямоугольной диметрии. Овал строится по осям и пригоден только для эллипсов, у которых малая ось в три раза меньше большой оси (в плоскостях х’О’у’иг’ОУ). Рассмотрим построение овала в плоскости х’О’у’.

Проводим две взаимно перпендикулярные прямые. Одну вертикально (параллельно z% другую горизонтально. Точка пересечения прямых будет центром О эллипса. Отрезки АВ и CD — соответственно большая и малая ось эллипса. По обе стороны от центра О на прямой, проходящей через малую ось CD, откладываем отрезки, равные длине большой оси АВ эллипса. Получаем центры 0 и 02 двух дуг окружностей. Центры 03 и 04 двух других дуг окружностей удалены от концов А и В большой оси эллипса на расстояние 1/4CD. Соединяем попарно центры и между линиями центров проводим дуги: из 0 радиусом Оф, из 04 радиусом О4В, из 02 радиусом 02С, из 03 радиусом 6М. Как следует из построений, радиусы сопрягающихся дуг равны R = АВ + 1/2CD, г = 1/4CZ).

Коробовая кривая и овал представляют собой кривые, приближенные к эллипсу. Существуют и другие способы построения эллипса.

Видео:Как начертить овал в горизонтальной плоскостиСкачать

Как начертить овал в горизонтальной плоскости

Эллипс — свойства, уравнение и построение фигуры

Среди центральных кривых второго порядка особое место занимает эллипс, близкий к окружности, обладающий похожими свойствами, но всё же уникальный и неповторимый.

Видео:Аксонометрические Проекции Окружности #черчение #окружность #проекции #изометрияСкачать

Аксонометрические Проекции Окружности  #черчение #окружность #проекции #изометрия

Определение и элементы эллипса

Множество точек координатной плоскости, для каждой из которых выполняется условие: сумма расстояний до двух заданных точек (фокусов) есть величина постоянная, называется эллипсом.

Эллипс циркулем через окружность

По форме график эллипса представляет замкнутую овальную кривую:

Наиболее простым случаем является расположение линии так, чтобы каждая точка имела симметричную пару относительно начала координат, а координатные оси являлись осями симметрии.

Отрезки осей симметрии, соединяющие две точки эллипса, называются осями. Различаются по размерам (большая и малая), а их половинки, соответственно, считаются полуосями.

Точки эллипса, являющиеся концами осей, называются вершинами.

Расстояния от точки на линии до фокусов получили название фокальных радиусов.

Расстояние между фокусами есть фокальное расстояние.

Отношение фокального расстояния к большей оси называется эксцентриситетом. Это особая характеристика, показывающая вытянутость или сплющенность фигуры.

Видео:Как начертить овал. Уроки черчения.Скачать

Как начертить овал. Уроки черчения.

Основные свойства эллипса

имеются две оси и один центр симметрии;

при равенстве полуосей линия превращается в окружность;

все точки фигуры лежат внутри прямоугольника со сторонами, равными большой и малой осям эллипса, проходящими через вершины параллельно осям.

Видео:Как начертить овал во фронтальной плоскостиСкачать

Как начертить овал во фронтальной плоскости

Уравнение эллипса

Пусть линия расположена так, чтобы центр симметрии совпадал с началом координат, а оси – с осями координат.

Эллипс циркулем через окружность

Для составления уравнения достаточно воспользоваться определением, введя обозначение:

а – большая полуось (в наиболее простом виде её располагают вдоль оси Оx) (большая ось, соответственно, равна 2a);

c – половина фокального расстояния;

M(x;y) – произвольная точка линии.

В этом случае фокусы находятся в точках F1(-c;0); F2(c;0)

Эллипс циркулем через окружность

Эллипс циркулем через окружность

После ввода ещё одного обозначения

получается наиболее простой вид уравнения:

a 2 b 2 — a 2 y 2 — x 2 b 2 = 0,

a 2 b 2 = a 2 y 2 + x 2 b 2 ,

Эллипс циркулем через окружность

Параметр b численно равен полуоси, расположенной вдоль Oy (a > b).

В случае (b b) формула эксцентриситета (ε) принимает вид:

Эллипс циркулем через окружность

Эллипс циркулем через окружность

Чем меньше эксцентриситет, тем более сжатым будет эллипс.

Видео:Эллипс - Инженерная графика.Скачать

Эллипс - Инженерная графика.

Площадь эллипса

Площадь фигуры (овала), ограниченной эллипсом, можно вычислить по формуле:

Эллипс циркулем через окружность

Эллипс циркулем через окружность

a – большая полуось, b – малая.

Видео:КАК РИСОВАТЬ ЭЛЛИПСЫ. Простой и быстрый способ рисования ЭЛЛИПСОВСкачать

КАК РИСОВАТЬ ЭЛЛИПСЫ. Простой и быстрый способ рисования ЭЛЛИПСОВ

Площадь сегмента эллипса

Часть эллипса, отсекаемая прямой, называется его сегментом.

Эллипс циркулем через окружность, где

(xo;y0) – крайняя точка сегмента.

Видео:Как начертить эллипс. Уроки черчения.Скачать

Как начертить эллипс. Уроки черчения.

Длина дуги эллипса

Длина дуги находится с помощью определённого интеграла по соответствующей формуле при введении параметра:

Эллипс циркулем через окружность

Видео:Как разметить эллипс, Как нарисовать эллипсСкачать

Как разметить эллипс, Как нарисовать эллипс

Радиус круга, вписанного в эллипс

В отличие от многоугольников, круг, вписанный в эллипс, касается его только в двух точках. Поэтому наименьшее расстояние между точками эллипса (содержащее центр) совпадает с диаметром круга:

Видео:Как начертить овал в профильной плоскостиСкачать

Как начертить овал в профильной плоскости

Радиус круга, описанного вокруг эллипса

Окружность, описанная около эллипса, касается его также только в двух точках. Поэтому наибольшее расстояние между точками эллипса совпадает с диаметром круга:

Онлайн калькулятор позволяет по известным параметрам вычислить остальные, найти площадь эллипса или его части, длину дуги всей фигуры или заключённой между двумя заданными точками.

Видео:КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).Скачать

КАК НАРИСОВАТЬ КРУГ В ИЗОМЕТРИИ (ОВАЛ В ИЗОМЕТРИЧЕСКОЙ ПРОЕКЦИИ).

Как построить эллипс

Построение линии удобно выполнять в декартовых координатах в каноническом виде.

Эллипс циркулем через окружность

Эллипс циркулем через окружность

Строится прямоугольник. Для этого проводятся прямые:

Эллипс циркулем через окружность

Сглаживая углы, проводится линия по сторонам прямоугольника.

Полученная фигура есть эллипс. По координатам отмечается каждый фокус.

При вращении вокруг любой из осей координат образуется поверхность, которая называется эллипсоид.

🔍 Видео

Построение пятиугольника циркулем и линейкойСкачать

Построение пятиугольника циркулем и линейкой

2 2 3 построение изометрии окружностиСкачать

2 2 3  построение изометрии окружности

Изображение окружности в перспективе. Эллипс.Скачать

Изображение окружности в перспективе. Эллипс.

Как быстро нарисовать овал, эллипс с помощью нитки и двух кнопок. Принцип золотого сечения.Скачать

Как быстро нарисовать овал, эллипс с помощью нитки и двух кнопок. Принцип золотого сечения.

построение эллипсаСкачать

построение эллипса

Овал по заданным осям . Геометрические построения.Скачать

Овал по заданным осям . Геометрические построения.

Как начертить эллипс (овал) на потолкеСкачать

Как начертить эллипс (овал) на потолке

Построение 8 угольника циркулемСкачать

Построение 8 угольника циркулем
Поделиться или сохранить к себе: