Две прямые параллельны если сумма углов равна 180 градусов

Признаки параллельных прямых – определение параллельности
  • Определение для параллельности
  • Признаки
    • Признак 1
    • Признак 2
    • Признак 3
  • Что мы узнали?

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Определение для параллельности

Выделим определения, которые необходимо знать для доказательства признаков параллельности двух прямых.

Прямые называют параллельными, если они не имеют точек пересечения. Кроме того, в решениях обычно параллельные прямые идут в связке с секущей линией.

Секущей прямой называется прямая, которая пересекает обе параллельные прямые. В этом случае образуются накрест лежащие, соответственные и односторонние углы. Накрест лежащими будут пары углов 1 и 4; 2 и 3; 8 и 6; 7 и 5. Соответственными будут 7 и 2; 1 и 6; 8 и 4; 3 и 5.

Односторонними 1 и 2; 7 и 6; 8 и 5; 3 и 4.

При правильном оформлении пишется: «Накрест лежащие углы при двум параллельных прямых а и b и секущей с», потому что для двух параллельных прямых может существовать бесконечное множество секущих, поэтому необходимо указывать, какую именно секущую, вы имеете в виду.

Также для доказательства понадобится теорема о внешнем угле треугольника, которая гласит, что внешний угол треугольника равен сумме двух углов треугольника несмежных с ним.

Видео:Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7Скачать

Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7

Признаки

Все признаки параллельных прямых завязаны на знание свойств углов и теорему о внешнем угле треугольника.

Признак 1

Две прямые параллельны, если накрест лежащие углы равны.

Рассмотрим две прямые а и b с секущей с. Накрест лежащие углы 1 и 4 равны. Предположим, что прямые не параллельны. Значит прямые пересекаются и должна быть точка пересечения М. Тогда образуется треугольник АВМ с внешним углом 1. Внешний угол должен быть равен сумме углов 4 и АВМ как несмежных с ним по теореме о внешнем угле в треугольнике. Но тогда получится, что угол 1 больше угла 4, а это противоречит условию задачи, значит, точки М не существует, прямые не пересекаются, то есть параллельны.

Две прямые параллельны если сумма углов равна 180 градусовДве прямые параллельны если сумма углов равна 180 градусов

Рис. 1. Рисунок к доказательству.

Признак 2

Две прямые параллельны, если соответственные углы при секущей равны.

Рассмотрим две прямые а и b с секущей с. Соответственные углы 7 и 2 равны. Обратим внимание на угол 3. Он является вертикальным для угла 7. Значит, углы 7 и 3 равны. Значит, углы 3 и 2 также равны, так как Признак 3

Две прямые параллельны, если сумма односторонних углов равна 180 градусам.

Две прямые параллельны если сумма углов равна 180 градусовДве прямые параллельны если сумма углов равна 180 градусов

Рис. 3. Рисунок к доказательству.

Рассмотрим две прямые а и b с секущей с. Сумма односторонних углов 1 и 2 равна 180 градусов. Обратим внимание на углы 1 и 7. Они являются смежными. То есть:

Мы в подробностях разобрали, какие углы получаются при рассечении параллельных прямых третьей линией, выделили и подробно расписали доказательство трех признаков параллельности прямых.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Планиметрия. Страница 2

Две прямые параллельны если сумма углов равна 180 градусов

  • Главная
  • Репетиторы
  • Учебные материалы
  • Контакты

Две прямые параллельны если сумма углов равна 180 градусов

Видео:7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонамиСкачать

7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонами

1.Параллельность прямых

Теорема: если две прямые параллельны третьей прямой, то они параллельны.

Доказательство. Пусть даны две прямые а и b. Допустим, что они не параллельны между собой. (Рис.1) Тогда они пересекаются в некоторой точке С. Следовательно, через точку С проходят две прямые, параллельные прямой с. А это невозможно согласно аксиоме: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. Следовательно, прямые а и b не пересекаются. Они параллельны.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.1 Теорема. Параллельность прямых.

Видео:Сумма углов 180 градусовСкачать

Сумма углов 180 градусов

2.Признаки параллельности прямых

Теорема. Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180 градусов, то прямые параллельны.

Доказательство. Пусть даны две прямые a и b, которые образуют с секущей АВ внутренние накрест лежащие углы (Рис. 2 а). Допустим, что прямые a и b не параллельны. Тогда они пересекаются в одной точке С. Секущая АВ разбивает плоскость на две полуплоскости. И, следовательно, точка С лежит в одной из них и образует треугольник АВС. Сторона АС принадлежит прямой а. Сторона ВС принадлежит прямой b. (Рис. 2 б)

Отложим равный треугольник ABC1 в другой полуплоскости с вершиной С1 так, чтобы угол А треугольника АВС совпал с углом В треугольника АВС1. Так как по условию задачи сумма внутренних односторонних углов равна 180 градусов, то сторона АС1 ляжет на прямую а, ВС1 — на прямую b. Тогда точка С1 принадлежит двум прямым: а и b. Т.е. две точки С и С1 одновременно принадлежат двум прямым. А это невозможно. Следовательно прямые a и b не пересекаются, они параллельны.

8. Пример 1

Даны прямая а и точка С, не лежащая на этой прямой. Необходимо доказать, что через точку С можно провести прямую, параллельную прямой а. (Рис.8)

Доказательство:

Проведем прямую b, параллельную прямой а. Тогда, согласно аксиоме 9, (через точку, не лежащую на данной прямой, можно провести только одну прямую) проведем прямую с через точку С, параллельную прямой b.

Таким образом, получается, что прямая с параллельна прямой b, и прямая a также параллельна прямой b по построению. Следовательно, по теореме о двух прямых, параллельных третьей прямой, имеем, что две прямые a и c параллельны прямой b и, следовательно, они (прямые а и с) параллельны. Т.е. через точку С можно провести прямую, параллельную прямой а.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.8 Задача. Даны прямая а и точка С .

Пример 2

Даны две параллельные прямые а и b, и секущая с. Докажите, что биссектрисы внутренних накрест лежащих углов, образованных этими прямыми, параллельны (Рис.9)

Доказательство:

Так как прямые а и b параллельны, то углы α и β, образованные этими параллельными прямыми и секущей с, равны как внутренние накрест лежащие, т.е. ∠α = ∠β. Согласно определению, биссектриса — это луч, исходящий из вершины угла между его сторонами, который делит этот угол пополам. Следовательно, биссектрисы d1 и d2 делят углы α и β пополам.

Таким образом, так как углы α и β равны, то и углы α/2 и β/2 также равны. А если углы α/2 и β/2 равны, то они являются внутренними накрест лежащими углами, между секущей с и прямыми, на которых лежат лучи d1 и d2, и согласно теореме: признак параллельности прямых, лучи d1 и d2 лежат на параллельных прямых.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.9 Задача. Даны две параллельные прямые а и b и секущая с.

Пример 3

Один из углов равнобедренного треугольника АВС равен 100° (Рис.10). Найти остальные углы треугольника.

Решение:

Так как сумма углов треугольника составляет 180°, а два угла у равнобедренного треугольника равны, то они не могут равняться 100°. Следовательно, углы при вершинах А и С равны, а угол при вершине В = 100°.

Отсюда следует, что можно составить соотношение:

Ответ: углы равнобедренного треугольника составляют: 100°, 40°, 40°.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.10 Задача. Найти углы треугольника.

Пример 4

Сумма внешних углов треугольника АВС при вершиах А и В равна 240° (Рис.11). Найдите угол С треугольника АВС.

Решение:

Так как сумма углов α + β + α1 + β1 = 360°, а

α1 + β1 = 240° по условию задачи, то

А так как сумма углов треугольника составляет 180°, то

α + β + γ = 180°, т.е.

И следовательно, γ = 60°

Ответ: угол при вершине С = 60°.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.11 Задача. Найти угол треугольника.

Пример 5

В равнобедренном треугольнике АВС с основанием АС проведена биссектриса AD. Угол при вершине В составляет 36° (Рис.12). Докажите, что треугольники CDA и ADB равнобедренные.

Доказательство:

Так как по условию задачи треугольник АВС равнобедренный, то углы при вершинах А и С равны:

α = 72°, а так как AD биссектриса, то ∠BAD = ∠DAC, т.е.

Следовательно, треугольник ADB равнобедренный. Углы при вершинах А и В равны 36°.

Теперь рассмотрим треугольник ADC. Угол λ равен:

λ = 180° — (α / 2 + α)

Таким образом, треугольник ADC равнобедренный. Углы при вершинах С и D равны 72°.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.12 Задача. В равнобедренном треугольнике АВС .

Видео:7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

Признаки и свойства параллельных прямых

Видео:Пары углов в геометрииСкачать

Пары углов в геометрии

Признаки параллельных прямых

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Две прямые параллельны если сумма углов равна 180 градусов

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Две прямые параллельны если сумма углов равна 180 градусов

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Две прямые параллельны если сумма углов равна 180 градусов

Если ∠1 + ∠2 = 180°, то a || b.

4. Если соответственные углы равны, то прямые параллельны:

Две прямые параллельны если сумма углов равна 180 градусов

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Две прямые параллельны если сумма углов равна 180 градусов

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Две прямые параллельны если сумма углов равна 180 градусов

Если a || b, то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Две прямые параллельны если сумма углов равна 180 градусов

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Две прямые параллельны если сумма углов равна 180 градусов

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Две прямые параллельны если сумма углов равна 180 градусов

Пятое свойство — это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:

📹 Видео

ГЕОМЕТРИЯ 7. Задача 160*. КАК ИЗМЕРИТЬ УГОЛ?Скачать

ГЕОМЕТРИЯ 7. Задача 160*. КАК ИЗМЕРИТЬ УГОЛ?

Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)Скачать

Геометрия 7 класс (Урок№23 - Сумма углов треугольника.)

Сумма углов треугольника равна 180Скачать

Сумма углов треугольника равна 180

Доказательство 2 и 3 признаков параллельности прямых.Скачать

Доказательство 2 и 3 признаков параллельности прямых.

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельныСкачать

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельны

Задача про углы образованные от пересечения прямых. Геометрия 7 класс.Скачать

Задача про углы образованные от пересечения прямых. Геометрия 7 класс.

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов
Поделиться или сохранить к себе:
Главная > Учебные материалы > Математика: Планиметрия. Страница 2
Две прямые параллельны если сумма углов равна 180 градусов
Две прямые параллельны если сумма углов равна 180 градусов
1 2 3 4 5 6 7 8 9 10 11 12
Две прямые параллельны если сумма углов равна 180 градусов
Две прямые параллельны если сумма углов равна 180 градусов

Рис.2 Теорема. Признаки параллельности прямых.

Видео:7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

3.Свойство углов при пересечении параллельных прямых

Теорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов.

Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3)

Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.3 Теорема. Свойство углов при пересечении параллельных прямых.

Видео:Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

4.Сумма углов треугольника

Теорема. Сумма углов треугольника равна 180 градусов.

Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4).

Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.4 Теорема. Сумма углов треугольника.

Видео:ПОЧЕМУ СУММА УГЛОВ В ТРЕУГОЛЬНИКЕ РАВНА 180? #shorts #геометрия #егэ #огэ #треугольникСкачать

ПОЧЕМУ СУММА УГЛОВ В ТРЕУГОЛЬНИКЕ РАВНА 180? #shorts #геометрия #егэ #огэ #треугольник

5.Единственность перпендикуляра к прямой

Теорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую.

Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5)

Теперь проведем через точку А прямую, параллельную нашей перпендикулярной прямой. Она также будет перпендикулярна прямой а. Так как прямая а, перпендикулярна одной из параллельных прямых, перпендикулярна и второй прямой. Отрезок АВ и есть перпендикуляр. Если допустить, что существует другой перпендикуляр, допустим в точке С. То в треугольнике АВС образуются два угла 90 градусов, а это невозможно. Следовательно отрезок АВ — это единственный перпендикуляр, проходящий через точку А.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.5 Теорема. Единственность перпендикуляра к прямой.

Видео:Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

6. Высота, биссектриса и медиана треугольника

Высотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону.

Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам.

Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6)

Две прямые параллельны если сумма углов равна 180 градусов

Рис.6 Высота, биссектриса и медиана треугольника.

Видео:Геометрия 7 класс. Углы с соответственно параллельными или перпендикулярнымСкачать

Геометрия 7 класс. Углы с соответственно параллельными или перпендикулярным

7. Свойство медианы равнобедренного треугольника

Теорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой.

Доказательство:

Пусть АВС — данный равнобедренный треугольник с основанием АС. Боковые стороны АВ и ВС равны, ВD — медиана. Необходимо доказать, что BD является биссектрисой и высотой.

Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°.

Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α.

Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой.

Две прямые параллельны если сумма углов равна 180 градусов

Рис.7 Свойство медианы равнобедренного треугольника.

Две прямые параллельны если сумма углов равна 180 градусов