Две параллельные хорды окружности

Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Две параллельные хорды окружностиОтрезки и прямые, связанные с окружностью
Две параллельные хорды окружностиСвойства хорд и дуг окружности
Две параллельные хорды окружностиТеоремы о длинах хорд, касательных и секущих
Две параллельные хорды окружностиДоказательства теорем о длинах хорд, касательных и секущих
Две параллельные хорды окружностиТеорема о бабочке

Две параллельные хорды окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьДве параллельные хорды окружности
КругДве параллельные хорды окружности
РадиусДве параллельные хорды окружности
ХордаДве параллельные хорды окружности
ДиаметрДве параллельные хорды окружности
КасательнаяДве параллельные хорды окружности
СекущаяДве параллельные хорды окружности
Окружность
Две параллельные хорды окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругДве параллельные хорды окружности

Конечная часть плоскости, ограниченная окружностью

РадиусДве параллельные хорды окружности

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаДве параллельные хорды окружности

Отрезок, соединяющий две любые точки окружности

ДиаметрДве параллельные хорды окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяДве параллельные хорды окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяДве параллельные хорды окружности

Прямая, пересекающая окружность в двух точках

Видео:Геометрия В окружности по разные стороны от ее центра проведены две параллельные хорды длиной 16 смСкачать

Геометрия В окружности по разные стороны от ее центра проведены две параллельные хорды длиной 16 см

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеДве параллельные хорды окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыДве параллельные хорды окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныДве параллельные хорды окружностиБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиДве параллельные хорды окружностиУ равных дуг равны и хорды.
Параллельные хордыДве параллельные хорды окружностиДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Две параллельные хорды окружности

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыДве параллельные хорды окружности

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыДве параллельные хорды окружности

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиДве параллельные хорды окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныДве параллельные хорды окружности

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиДве параллельные хорды окружности

У равных дуг равны и хорды.

Параллельные хордыДве параллельные хорды окружности

Дуги, заключённые между параллельными хордами, равны.

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Две параллельные хорды окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Две параллельные хорды окружности

Две параллельные хорды окружности

ФигураРисунокТеорема
Пересекающиеся хордыДве параллельные хорды окружности
Касательные, проведённые к окружности из одной точкиДве параллельные хорды окружности
Касательная и секущая, проведённые к окружности из одной точкиДве параллельные хорды окружности
Секущие, проведённые из одной точки вне кругаДве параллельные хорды окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Две параллельные хорды окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Две параллельные хорды окружности

Две параллельные хорды окружности

Пересекающиеся хорды
Две параллельные хорды окружности
Касательные, проведённые к окружности из одной точки
Две параллельные хорды окружности
Касательная и секущая, проведённые к окружности из одной точки
Две параллельные хорды окружности
Секущие, проведённые из одной точки вне круга
Две параллельные хорды окружности
Пересекающиеся хорды
Две параллельные хорды окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Две параллельные хорды окружности

Касательные, проведённые к окружности из одной точки

Две параллельные хорды окружности

Две параллельные хорды окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Секущие, проведённые из одной точки вне круга

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Две параллельные хорды окружности

Две параллельные хорды окружности

Тогда справедливо равенство

Две параллельные хорды окружности

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Две параллельные хорды окружности

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Две параллельные хорды окружности

Две параллельные хорды окружности

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Две параллельные хорды окружности

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Две параллельные хорды окружности

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Две параллельные хорды окружности

Две параллельные хорды окружности

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Две параллельные хорды окружности

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Две параллельные хорды окружности

Две параллельные хорды окружности

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Две параллельные хорды окружности

откуда и вытекает требуемое утверждение.

Видео:Геометрия В окружность по одну сторону от ее центра проведены две параллельные хорды длиной 48 смСкачать

Геометрия В окружность по одну сторону от ее центра проведены две параллельные хорды длиной 48 см

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Две параллельные хорды окружности

Две параллельные хорды окружности

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Две параллельные хорды окружности

Две параллельные хорды окружности

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Две параллельные хорды окружности

Две параллельные хорды окружности

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Две параллельные хорды окружности

Две параллельные хорды окружности

Воспользовавшись теоремой 1, получим

Две параллельные хорды окружности

Две параллельные хорды окружности

Воспользовавшись равенствами (1) и (2), получим

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Две параллельные хорды окружности

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Хорда окружности — определение, свойства, теорема

Две параллельные хорды окружности

Видео:Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)Скачать

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)

Хорда в геометрии

Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

Две параллельные хорды окружности

Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

Свойства отрезка окружности

Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

Две параллельные хорды окружности

  1. Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
  2. Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
  3. Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
  4. Самый маленький отрезок в окружности это точка.
  5. Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
  6. При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
  7. Дуги, которые находятся между двумя параллельными хордами, равны.

Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

Ключевая теорема

Две параллельные хорды окружности

Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

Две параллельные хорды окружности

Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

Видео:№659. Докажите, что градусные меры дуг окружности, заключенных между параллельными хордамиСкачать

№659. Докажите, что градусные меры дуг окружности, заключенных между параллельными хордами

Касательная и секущая

Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

Две параллельные хорды окружности

Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

Две параллельные хорды окружности

Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

Две параллельные хорды окружности

Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

Видео:Окружнось. Зависимость длины хорды, от длины дуги.Скачать

Окружнось. Зависимость длины хорды, от длины дуги.

Решение задач

При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

Две параллельные хорды окружности

  • Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
  • Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
  • Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.

Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

math4school.ru

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Две параллельные хорды окружности

Видео:Окружность. Длина хорды. Теорема синусов.Скачать

Окружность. Длина хорды. Теорема синусов.

Окружность

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Основные определения

Две параллельные хорды окружности

Окружностью называется замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.

Отрезок R , который соединяет центр окружности с любой её точкой (а также длина этого отрезка), называется радиусом.

Отрезок DE , который соединяет какие-либо две точки окружности, называется хордой.

Хорда BC , проходящая через центр окружности, называется диаметром.

Диаметр – наибольшая хорда данной окружности. Наименьшей хорды окружности не существует.

Две параллельные хорды окружности

Дуга, ∪AB,– это часть окружности, расположенная между двумя её точками.

Вписанным углом, α , называется угол, образованный двумя хордами, имеющими общий конец.

Центральным углом, β , называется угол, образованный двумя радиусами.

Видео:Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Хорды

Две параллельные хорды окружности

Параллельные хорды отсекают на окружности равные дуги:

Две параллельные хорды окружности

Диаметр, проходящий через середину хорды, перпендикулярен ей:

Две параллельные хорды окружности

Хорды окружности равны тогда и только тогда, когда они равноудалены от её центра:

Хорды окружности равны тогда и только тогда, когда они стягивают равные дуги:

Большая из двух хорд окружности расположена ближе к её центру:

Две параллельные хорды окружности

Угол, составленный двумя хордами, измеряется полусуммой дуг, заключённых между его сторонами, продолженными в обе стороны:

Если хорды AB и CD пересекаются в точке М, то

Видео:Найти радиус окружности если известны длины пересекающихся хордСкачать

Найти радиус окружности если известны длины пересекающихся хорд

Касательные и секущие

Две параллельные хорды окружности

Прямая ( a ), которая лежит в одной плоскости с окружностью и имеет с ней только одну общую точку ( B ), называется касательной к этой окружности.

Прямая ( a ), которая перпендикулярна диаметру окружности ( АВ ) и проходит через его конец ( В ), является касательной к этой окружности.

Касательная окружности перпендикулярна диаметру и радиусу, проведённым в точку касания.

Две параллельные хорды окружности

Отрезки касательных, проведённые из одной точки, равны:

Углы, образованные касательными, проведёнными из одной точки, и прямой, проходящей через центр окружности и эту точку, равны:

Две параллельные хорды окружности

Прямая, которая пересекает окружность в двух различных точках, называется секущей.

Если через точку М вне окружности проведена секущая к ней, то произведение расстояний от точки М до точек пересечения с окружностью равно квадрату длины отрезка касательной, проведённой из точки М к окружности:

Две параллельные хорды окружности

Угол, образованный двумя секущими, равен полуразности дуг, заключенных между его сторонами:

Видео:№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

Касание двух окружностей

Две параллельные хорды окружности Две параллельные хорды окружности

Для двух окружностей с центрами О 1 и О 2, и радиусами R и r :

  • при внешнем касании: О 1 О 2 = R + r ;
  • при внутреннем касании: О 1 О 2 = Rr .

Видео:Демо ОГЭ по математике. Задание 17. Хорда окружности.Скачать

Демо ОГЭ по математике. Задание 17. Хорда окружности.

Углы в окружности

Радиан – угол, который соответствует дуге, длина которой равна радиусу окружности. Один радиан содержит приближённо 57°17’44,8’’.

Радиан принимается за единицу измерения углов при так называемом круговом, или радианном, измерении углов.

Если радианная мера угла равна α , то угол содержит (180· α )/ π градусов.

Если градусная мера угла составляет п ° , то круговая – πп /180 радиан.

Две параллельные хорды окружности

Угловой величиной дуги называется величина соответствующего ей центрального угла:

Угловая величина дуги обладает следующими свойствами:

  • Угловая величина дуги неотрицательна.
  • Равные дуги имеют равные угловые величины.
  • Если две дуги одной окружности (или равных окружностей) имеют равные угловые величины, то они равны.

Вписанный угол измеряется половиной дуги, на которую он опирается, и равен половине центрального угла, опирающегося на ту же дугу:

∠ АВС = ½ ·∪ АС = ½ ·∠ АОС .

Вписанные углы, опирающиеся на одну и ту же дугу, равны:

Две параллельные хорды окружности

Вписанный угол, опирающийся на полуокружность (диаметр), является прямым:

∠ ACВ = ½ ·∪ АВ = ½ ·180°=90°.

Видео:Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)

Длина окружности и дуги

Две параллельные хорды окружности

Длиной окружности называется общая граница периметров вписанных и описанных правильных многоугольников при неограниченном увеличении числа их сторон.

Отношение длины окружности к длине её диаметра одинаково для всех окружностей и обозначается греческой буквой π .

Длина дуги окружности, выраженной в радианной мере, равна произведению числа её радиан на радиус окружности:

📽️ Видео

8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Задача на нахождение длины хорды окружностиСкачать

Задача на нахождение длины хорды окружности

Радиус Хорда ДиаметрСкачать

Радиус Хорда Диаметр
Поделиться или сохранить к себе: