Доклад на тему равнобедренный треугольник

Доклад на тему равнобедренный треугольник

Доклад на тему равнобедренный треугольник

Равнобедренный треугольник — треугольнику которого две стороны равны.
Равные стороны называют боковыми сторонами, а третью сторону — основанием.

Свойства равнобедренного треугольника были известны с давних времен. Еще древние вавилоняне (II в. до н.э.) знали, что углы у основания равнобедренного треугольника равны. Любой треугольник можно разрезать на равнобедренные треугольники.

Свойства и признаки равнобедренного треугольника

Доклад на тему равнобедренный треугольник

Свойства равнобедренного треугольника:
1. У равнобедренного треугольника углы у основания равны (теорема).
2. Медиана, биссектриса и высота, проведенные к основанию, совпадают (теорема).
3. Медианы равнобедренного треугольника, проведенные к боковым сторонам, равны.
4. Высоты равнобедренного треугольника, проведенные к боковым сторонам, равны.
5. Биссектрисы равнобедренного треугольника, проведенные к боковым сторонам, равны.

Признаки равнобедренного треугольника:
Если у треугольника есть один из нижеуказанных признаков, то он равнобедренный:
— два угла равны,
— высота и медиана совпадают,
— высота и биссектриса совпадают,
— медиана и биссектриса совпадают,
— две медианы равны,
— две высоты равны,
— две биссектрисы равны.

ПРИМЕРЫ РЕШЕНИЯ
КЛЮЧЕВЫХ ЗАДАЧ:

Задача № 1. Дано: ΔABC — равносторонний, ΔADC — равнобедренный (AD=CD), AC — общая сторона, BC = 8 см, PADC > PABC в 1,5 раза. Найти: CD.

Доклад на тему равнобедренный треугольник

Задача № 2. Дано: ΔABC — равнобедренный, AB = BC, AD — медиана, AB + BD = 27 см, AC + CD = 21 см. Найти: AB, BC, AC.

Доклад на тему равнобедренный треугольник

Задача № 3. Дано: ΔABC — равнобедренный, AB = BC, ∠1 = 130°. Найти: ∠2.

Доклад на тему равнобедренный треугольник

Теоретический тест
с последующей самопроверкой

  1. Медиана в равнобедренном треугольнике является его биссектрисой и высотой. Это утверждение:
    а) всегда верно;
    б) может быть верно;
    в) всегда неверно.
  2. Если треугольник равносторонний, то:
    а) он равнобедренный;
    б) все его углы равны;
    в) любая его высота является биссектрисой и медианой.
  3. В каком треугольнике только одна его высота делит треугольник на два равных треугольника?
    а) в любом;
    б) в равнобедренном;
    в) в равностороннем.
  4. Биссектриса в равностороннем треугольнике является медианой и высотой. Это утверждение:
    а) всегда верно;
    б) может быть верно;
    в) всегда неверно.
  5. Если треугольник равнобедренный, то:
    а) он равносторонний;
    б) любая его медиана является биссектрисой и высотой;
    в) два его угла равны.
  6. В каком треугольнике любая его высота делит треугольник на два равных треугольника?
    а) в любом;
    б) в равнобедренном;
    в) в равностороннем.
  7. Если в треугольнике два угла равны, то этот треугольник является:
    а) равносторонним;
    б) равнобедренным;
    в) прямоугольным.
  8. Если в треугольнике две стороны равны, то:
    а) у него равны два угла;
    б) у него все углы равны;
    в) этот треугольник равносторонний.
  1. Медиана в равнобедренном треугольнике является его биссектрисой и высотой. Это утверждение: б) может быть верно.
  2. Если треугольник равносторонний, то: а) он равнобедренный; б) все его углы равны; в) любая его высота является биссектрисой и медианой.
  3. В каком треугольнике только одна его высота делит треугольник на два равных треугольника? б) в равнобедренном.
  4. Биссектриса в равностороннем треугольнике является медианой и высотой. Это утверждение: а) всегда верно.
  5. Если треугольник равнобедренный, то: в) два его угла равны.
  6. В каком треугольнике любая его высота делит треугольник на два равных треугольника? в) в равностороннем.
  7. Если в треугольнике два угла равны, то этот треугольник является: б) равнобедренным.
  8. Если в треугольнике две стороны равны, то: а) у него равны два угла.

Вы смотрели конспект по теме «Равнобедренный треугольник + ЗАДАЧИ по теме». Выберите дальнейшие действия:

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Равнобедренный треугольник

Равнобедренный треугольник – треугольник, у которого две стороны равны между собой.

Равные стороны называются боковыми , третья сторона называется основанием .

Доклад на тему равнобедренный треугольник

Свойства равнобедренного треугольника

1. Углы при основании равны

Доклад на тему равнобедренный треугольник

2. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой

Доклад на тему равнобедренный треугольник

3. Углы при основании равнобедренного треугольника вычисляются по следующей формуле:

Доклад на тему равнобедренный треугольник,

где Доклад на тему равнобедренный треугольник– угол напротив основания.

Доклад на тему равнобедренный треугольник

4. Биссектрисы, медианы и высоты, проведённые из углов при основании равны между собой

Доклад на тему равнобедренный треугольник

5. Центры вписанной и описанной окружностей лежат на медиане=высоте=биссектрисе, проведенной к основанию

Доклад на тему равнобедренный треугольник

Признаки равнобедренного треугольника

1. Если в треугольнике два угла равны, то он равнобедренный.

2. Если в треугольнике медиана является и высотой (биссектрисой), то такой треугольник равнобедренный.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Равнобедренный треугольник: свойства, признаки и формулы

Доклад на тему равнобедренный треугольник

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

Доклад на тему равнобедренный треугольник

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Доклад на тему равнобедренный треугольник

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Доклад на тему равнобедренный треугольник

Видео:Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!

Видео:Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Доклад на тему равнобедренный треугольник

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Доклад на тему равнобедренный треугольник

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Доклад на тему равнобедренный треугольник

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, AH = HC и BH — медиана.

Видео:ГЕОМЕТРИЯ 7 класс : Решение задач по теме "Равнобедренный треугольник"Скачать

ГЕОМЕТРИЯ 7 класс : Решение задач по теме "Равнобедренный треугольник"

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Доклад на тему равнобедренный треугольник

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

📹 Видео

Равнобедренный треугольник. Практическая часть. 7 класс.Скачать

Равнобедренный треугольник. Практическая часть. 7 класс.

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Равнобедренный треугольник и его свойства . 7 классСкачать

Равнобедренный треугольник и его свойства . 7 класс

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК и его свойства. §9 геометрия 7 классСкачать

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК и его свойства. §9 геометрия 7 класс

Свойства равнобедренного треугольника #огэ #математика #shortsСкачать

Свойства равнобедренного треугольника #огэ #математика #shorts

Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)Скачать

Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)

Геометрия 7 класс - равнобедренный треугольник и его свойстваСкачать

Геометрия 7 класс - равнобедренный треугольник и его свойства

Решение задачи по теме "Равнобедренный треугольник"Скачать

Решение задачи по теме "Равнобедренный треугольник"

Решение задач ( Равнобедренный треугольник) 7 классСкачать

Решение задач ( Равнобедренный треугольник) 7 класс

Свойства равнобедренного треугольника. Практическая часть. 7 класс.Скачать

Свойства равнобедренного треугольника. Практическая часть. 7 класс.

Равнобедренный треугольникСкачать

Равнобедренный треугольник

Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать

Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.

РЕШЕНИЕ ЗАДАЧИ ПО ТЕМЕ «РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК». Задачи | ГЕОМЕТРИЯ 7 классСкачать

РЕШЕНИЕ ЗАДАЧИ ПО ТЕМЕ «РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК». Задачи | ГЕОМЕТРИЯ 7 класс

Две задачи по геометрии за 7 класс на тему: "Треугольники"Скачать

Две задачи по геометрии за 7 класс на тему: "Треугольники"
Поделиться или сохранить к себе: