Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Свойства вписанных и описанных четырёхугольников

Теорема 1 . Сумма противоположных углов вписанного четырёхугольника равна 180°.

Пусть в окружность с центром О вписан четырёхугольник ABCD (рис. 412). Требуется доказать, что ∠А + ∠С = 180° и ∠В + ∠D = 180°.

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

∠А, как вписанный в окружность О, измеряется 1 /2(breve).

∠С, как вписанный в ту же окружность, измеряется 1 /2(breve).

Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т.е. имеют 360°.

Отсюда ∠А + ∠С = 360° : 2 = 180°.

Аналогично доказывается, что и ∠В + ∠D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов Аи С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180°.

Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.

Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно

∠А + ∠С = 180° и ∠В + ∠D = 180°(рис. 412).

Докажем, что около такого четырёхугольника можно описать окружность.

Доказательство. Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?

Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Допустим, что вершина окажется внутри круга и займёт положение D’ (рис. 413). Тогда в четырёхугольнике ABCD’ будем иметь:

Продолжив сторону AD’ до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме

Из этих двух равенств следует:

но этого быть не может, так как ∠D’, как внешний относительно треугольника CD’E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.

Так же доказывается, что вершина D не может занять положение D» вне круга (рис. 414).

Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.

1. Вокруг всякого прямоугольника можно описать окружность.

2. Вокруг равнобедренной трапеции можно описать окружность.

В обоих случаях сумма противоположных углов равна 180°.

Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (рис. 415), т. е. стороны его АВ, ВС, CD и DA — касательные к этой окружности.

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки, имеем:

Сложим почленно эти равенства. Получим:

АР + ВР + DN + CN = АК + ВМ +DK + СМ,

т. е. АВ + CD = AD + ВС, что и требовалось доказать.

Видео:#Свойство углов вписанного четырехугольникаСкачать

#Свойство углов вписанного четырехугольника

Докажите теорему о свойстве углов вписанного окружность четырёхугольника: если четырёхугольник является вписанным в окружность, то сумма

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Ваш ответ

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

решение вопроса

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,029
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Четырехугольники, вписанные в окружность. Теорема Птолемея

Докажите теорему о свойстве углов вписанного в окружность четырехугольникаВписанные четырехугольники и их свойства
Докажите теорему о свойстве углов вписанного в окружность четырехугольникаТеорема Птолемея

Видео:Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Докажите теорему о свойстве углов вписанного в окружность четырехугольника
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Докажите теорему о свойстве углов вписанного в окружность четырехугольника

ФигураРисунокСвойство
Окружность, описанная около параллелограммаДокажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаДокажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииДокажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаДокажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникДокажите теорему о свойстве углов вписанного в окружность четырехугольника

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Докажите теорему о свойстве углов вписанного в окружность четырехугольника
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Окружность, описанная около параллелограмма
Докажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Докажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Докажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Докажите теорему о свойстве углов вписанного в окружность четырехугольникаОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Докажите теорему о свойстве углов вписанного в окружность четырехугольника
Окружность, описанная около параллелограмма
Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаДокажите теорему о свойстве углов вписанного в окружность четырехугольника

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииДокажите теорему о свойстве углов вписанного в окружность четырехугольника

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаДокажите теорему о свойстве углов вписанного в окружность четырехугольника

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникДокажите теорему о свойстве углов вписанного в окружность четырехугольника

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Видео:Угол, вписанный в окружность. Теорема о величине вписанного в окружность угла. Геометрия 8-9 классСкачать

Угол, вписанный в окружность. Теорема о величине вписанного в окружность угла. Геометрия 8-9 класс

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Докажем, что справедливо равенство:

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Докажите теорему о свойстве углов вписанного в окружность четырехугольника

откуда вытекает равенство:

Докажите теорему о свойстве углов вписанного в окружность четырехугольника(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

📸 Видео

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Геометрия Найдите углы четырехугольника MNKP, вписанного в окружность, если угол MKP = 58, угол MPNСкачать

Геометрия Найдите углы четырехугольника MNKP, вписанного в окружность, если угол MKP = 58, угол MPN

Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

ОГЭ Задание 25 Свойства вписанного и описанного четырехугольникаСкачать

ОГЭ Задание 25 Свойства вписанного и описанного четырехугольника

Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника

Геометрия Теорема Птолемея Произведение диагоналей вписанного в окружность четырехугольника равноСкачать

Геометрия Теорема Птолемея Произведение диагоналей вписанного в окружность четырехугольника равно

Окружность, вписанная в четырехугольникСкачать

Окружность, вписанная в четырехугольник

свойства вписанного и описанного четырехугольника #SHORTSСкачать

свойства вписанного и описанного четырехугольника #SHORTS

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольники

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

Геометрия 8 класс (Урок№27 - Теорема о вписанном угле.)Скачать

Геометрия 8 класс (Урок№27 - Теорема о вписанном угле.)

Вписанный угол в окружность ❤️ #геометрияСкачать

Вписанный угол в окружность ❤️ #геометрия
Поделиться или сохранить к себе: