Вписанный угол, опирающийся на диаметр, обладает полезным свойством, вытекающим из теоремы о вписанном угле.
Свойство вписанного угла, опирающегося на диаметр
(следствие из теоремы о вписанном угле)
Вписанный угол, опирающийся на диаметр, прямой.
Дано:
Так как AC- диаметр, то ∠AOC=180º.
∠AOC — центральный, ∠ABC — соответствующий ему вписанный угол.
Следовательно, по теореме о вписанном угле,
Что и требовалось доказать.
Из этого следует, например, что если центр описанной окружности лежит на стороне треугольника, то угол напротив этой стороны — прямой.
Если центр описанной окружности лежит на диагонали четырехугольника, то угол напротив этой диагонали — прямой.
Другой вариант формулировки следствия:
Диаметр виден из любой точки окружности под углом 90º.
Если вписанный угол связать с дугой, то следствие из теоремы о вписанном угле звучит так:
Вписанный угол, опирающийся на полуокружность — прямой.
Видео:Вписанный угол, опирающийся на диаметр окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Вписанный угол опирающийся на диаметр окружности прямой это верно
Какое из следующих утверждений верно?
1. Все углы ромба равны.
2. Вписанный угол, опирающийся на диаметр окружности, прямой.
3. Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.
В ответ запишите номер выбранного утверждения.
Рассмотрим каждое из утверждений:
1. Все углы ромба равны — неверно, так как у ромба равны стороны, а не углы.
2. Вписанный угол, опирающийся на диаметр окружности, прямой — верно согласно свойству вписанных углов.
3. Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны — неверно, если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Видео:Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Центральные и вписанные углы
О чем эта статья:
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Центральный угол и вписанный угол
Окружность — замкнутая линия, все точки которой равноудалены от ее центра.
Определение центрального угла:
Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.
На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF
Определение вписанного угла:
Вписанный угол — это угол, вершина которого лежит на окружности.
Вписанный угол равен половине дуги, на которую опирается.
На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC
Видео:Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать
Свойства центральных и вписанных углов
Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.
- Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:
Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.
- Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
- Вписанные углы окружности равны друг другу, если опираются на одну дугу:
ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.
- Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:
ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.
Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:
На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.
Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Хорда — отрезок, соединяющий две точки на окружности.
- Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.
AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.
- Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.
ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.
- Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.
ㄥBAC + ㄥBDC = 180°
Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать
Примеры решения задач
Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.
Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?
Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°
Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.
Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°
Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?
СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°
🎬 Видео
Вписанный угол, опирающийся на хорду, равную радиусу окружностиСкачать
ОГЭ по математике. 3 вар. (20) Какое из следующих утверждений верно ОГЭСкачать
8 класс, 34 урок, Теорема о вписанном углеСкачать
Задача Петра ПервогоСкачать
Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать
ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать
Вписанные углы в окружностиСкачать
Задача К одиннадцати тузСкачать
ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать
Две великолепные задачи! Секретные способы решения!Скачать
16 задание ОГЭ математика 2023 | УмскулСкачать
Какие из СЛЕДУЮЩИХ УТВЕРЖДЕНИЙ верны? Решаем задание 19 из ОГЭ, 4 частьСкачать
19 задание на ОГЭ по математикеСкачать
Углы в окружности | ФормулыСкачать
#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать