Возможны четыре различных случая расположения двух прямых в пространстве:
– прямые скрещиваются, т. е. не лежат в одной плоскости;
– прямые пересекаются, т. е. лежат в одной плоскости и имеют одну общую точку;
– прямые параллельны, т. е. лежат в одной плоскости и не пересекаются;
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
(a || b) (прямая а параллельна прямой b)
Теорема о параллельных прямых. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
(Min b, aparallel b) |
---|
Два отрезка называются параллельными, если они лежат на параллельных прямых.
отрезок (CD || AB) |
Свойства параллельных прямых
- Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
(a capalpha=M, bparallel a Rightarrow bcap alpha) |
---|
- Если две прямые параллельны третьей прямой, то они параллельны.
(aparallel c, bparallel c Rightarrow aparallel b) |
Две прямые называются скрещивающимися, если они не лежат в одной плоскости.
Признак скрещивающихся прямых. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
(asubsetalpha, bcap alpha=K, \ Knotin a Rightarrow a и b — скрещивающиеся прямые) |
Точки А и В – середины ребер параллелепипеда. Определите взаимное расположение прямых (a и b) .
Точки А, В, С и D – середины ребер прямоугольного параллелепипеда. Найдите параллельные прямые.
Определите взаимное расположение прямых (a и b) .
Точки А и D – середины ребер параллелепипеда. Выберите верные высказывания.
1) Прямые СD и MN скрещивающиеся.
2) Прямые АВ и MN лежат в одной плоскости.
3) Прямые СD и MN пересекаются.
4) Прямые АВ и СD скрещивающиеся.
Каким может быть взаимное расположение прямых а и b, если через прямую а можно провести плоскость, параллельную прямой b?
Две прямые в пространстве называются параллельными, если
Прямая а, параллельная прямой b, пересекает плоскость α. Прямая с параллельна прямой b, тогда
Каким может быть взаимное расположение двух прямых, если обе они параллельны одной плоскости?
Две прямые пересекаются. Что это значит?
Две прямые называются скрещивающимися, если
- Взаимное расположение прямых в пространстве. Свойства параллельных прямых. Признаки скрещивающихся прямых
- Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
- Параллельные прямые и плоскость – основные сведения
- Параллельность прямой и плоскости – признак и условия параллельности
- 💥 Видео
Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать
Взаимное расположение прямых в пространстве. Свойства параллельных прямых. Признаки скрещивающихся прямых
Возможны четыре различных случая расположения двух прямых в пространстве:
– прямые скрещиваются, т. е. не лежат в одной плоскости;
– прямые пересекаются, т. е. лежат в одной плоскости и имеют одну общую точку;
– прямые параллельны, т. е. лежат в одной плоскости и не пересекаются;
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
(a || b) (прямая а параллельна прямой b)
Теорема о параллельных прямых. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
(Min b, aparallel b) |
---|
Два отрезка называются параллельными, если они лежат на параллельных прямых.
отрезок (CD || AB) |
Свойства параллельных прямых
- Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
(a capalpha=M, bparallel a Rightarrow bcap alpha) |
---|
- Если две прямые параллельны третьей прямой, то они параллельны.
(aparallel c, bparallel c Rightarrow aparallel b) |
Две прямые называются скрещивающимися, если они не лежат в одной плоскости.
Признак скрещивающихся прямых. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
(asubsetalpha, bcap alpha=K, \ Knotin a Rightarrow a и b — скрещивающиеся прямые) |
Точки А и В – середины ребер параллелепипеда. Определите взаимное расположение прямых (a и b) .
Точки А, В, С и D – середины ребер прямоугольного параллелепипеда. Найдите параллельные прямые.
Определите взаимное расположение прямых (a и b) .
Точки А и D – середины ребер параллелепипеда. Выберите верные высказывания.
1) Прямые СD и MN скрещивающиеся.
2) Прямые АВ и MN лежат в одной плоскости.
3) Прямые СD и MN пересекаются.
4) Прямые АВ и СD скрещивающиеся.
Каким может быть взаимное расположение прямых а и b, если через прямую а можно провести плоскость, параллельную прямой b?
Две прямые в пространстве называются параллельными, если
Прямая а, параллельная прямой b, пересекает плоскость α. Прямая с параллельна прямой b, тогда
Каким может быть взаимное расположение двух прямых, если обе они параллельны одной плоскости?
Две прямые пересекаются. Что это значит?
Две прямые называются скрещивающимися, если
Видео:Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | УмскулСкачать
Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Параллельные прямые и плоскость – основные сведения
Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.
Параллельность обозначается « ∥ ». Если в задании по условию прямая a и плоскость α параллельны, тогда обозначение имеет вид a ∥ α . Рассмотрим рисунок, приведенный ниже.
Считается, что прямая a , параллельная плоскости α и плоскость α , параллельная прямой a , равнозначные, то есть прямая и плоскость параллельны друг другу в любом случае.
Видео:10 класс, 6 урок, Параллельность прямой и плоскостиСкачать
Параллельность прямой и плоскости – признак и условия параллельности
Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.
Если заданная прямая a , не лежащая в плоскости α , параллельна прямой b , которая принадлежит плоскости α , тогда прямая a параллельна плоскости α .
Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.
Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.
Подробное доказательство рассмотрено в учебнике 10 — 11 класса по геометрии. Необходимым и достаточным условием параллельности прямой с плоскостью возможно при наличии определения направляющего вектора прямой и нормального вектора плоскости.
Для параллельности прямой a , не принадлежащей плоскости α , и данной плоскости необходимым и достаточным условием является перпендикулярность направляющего вектора прямой с нормальным вектором заданной плоскости.
Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.
Допустим, прямая а в систему координат О х у задается каноническими уравнениями прямой в пространстве , которые имеют вид x — x 1 a x = y — y 1 a y = z — z 1 a z или параметрическими уравнениями прямой в пространстве x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , плоскостью α с общими уравнениями плоскости A x + B y + C z + D = 0 .
Отсюда a → = ( a x , a y , a z ) является направляющим вектором с координатами прямой а, n → = ( A , B , C ) — нормальным вектором заданной плоскости альфа.
Чтобы доказать перпендикулярность n → = ( A , B , C ) и a → = ( a x , a y , a z ) , нужно использовать понятие скалярного произведения. То есть при произведении a → , n → = a x · A + a y · B + a z · C результат должен быть равен нулю из условия перпендикулярности векторов.
Значит, что необходимым и достаточным условием параллельности прямой и плоскости запишется так a → , n → = a x · A + a y · B + a z · C . Отсюда a → = ( a x , a y , a z ) является направляющим вектором прямой a с координатами, а n → = ( A , B , C ) — нормальным вектором плоскости α .
Определить, параллельны ли прямая x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ с плоскостью x + 6 y + 5 z + 4 = 0 .
Получаем, что предоставленная прямая не принадлежит плоскости, так как координаты прямой M ( 1 , — 2 , 2 ) не подходят. При подстановке получаем, что 1 + 6 · ( — 2 ) + 5 · 2 + 4 = 0 ⇔ 3 = 0 .
Необходимо проверить на выполнимость необходимое и достаточное условие параллельности прямой и плоскости. Получим, что координаты направляющего вектора прямой x = 1 + 2 · λ y = — 2 + 3 · λ z = 2 — 4 · λ имеют значения a → = ( 2 , 3 , — 4 ) .
Нормальным вектором для плоскости x + 6 y + 5 z + 4 = 0 считается n → = ( 1 , 6 , 5 ) . Перейдем к вычислению скалярного произведения векторов a → и n → . Получим, что a → , n → = 2 · 1 + 3 · 6 + ( — 4 ) · 5 = 0 .
Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.
Ответ: прямая с плоскостью параллельны.
Определить параллельность прямой А В в координатной плоскости О у z , когда даны координаты A ( 2 , 3 , 0 ) , B ( 4 , — 1 , — 7 ) .
По условию видно, что точка A ( 2 , 3 , 0 ) не лежит на оси О х , так как значение x не равно 0 .
Для плоскости O x z вектор с координатами i → = ( 1 , 0 , 0 ) считается нормальным вектором данной плоскости. Обозначим направляющий вектор прямой A B как A B → . Теперь при помощи координат начала и конца рассчитаем координаты вектора A B . Получим, что A B → = ( 2 , — 4 , — 7 ) . Необходимо выполнить проверку на выполнимость необходимого и достаточного условия векторов A B → = ( 2 , — 4 , — 7 ) и i → = ( 1 , 0 , 0 ) , чтобы определить их перпендикулярность.
Запишем A B → , i → = 2 · 1 + ( — 4 ) · 0 + ( — 7 ) · 0 = 2 ≠ 0 .
Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.
Ответ: не параллельны.
Не всегда заданное условие способствует легкому определению доказательства параллельности прямой и плоскости. Появляется необходимость в проверке принадлежности прямой a плоскости α . Существует еще одно достаточное условие, при помощи которого доказывается параллельность.
При заданной прямой a с помощью уравнения двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , плоскостью α — общим уравнением плоскости A x + B y + C z + D = 0 .
Необходимым и достаточным условием для параллельности прямой a и плоскости α яляется отсутствие решений системы линейных уравнений, имеющей вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 .
Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:
A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , а также уравнению плоскости A x + B y + C z + D = 0 .
Следовательно, система уравнений, имеющая вид A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 , называется несовместной.
Верно обратное: при отсутствии решений системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не существует точек в О х у z , удовлетворяющих всем заданным уравнениям одновременно. Получаем, что нет такой точки с координатами, которая могла бы сразу быть решениями всех уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 и уравнения A x + B y + C z + D = 0 . Значит, имеем параллельность прямой и плоскости, так как отсутствуют их точки пересечения.
Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.
Доказать , что прямая x — 1 = y + 2 — 1 = z 3 параллельна плоскости 6 x — 5 y + 1 3 z — 2 3 = 0 .
Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:
x — 1 = y + 2 — 1 = z 3 ⇔ — 1 · x = — 1 · ( y + 2 ) 3 · x = — 1 · z 3 · ( y + 2 ) = — 1 · z ⇔ x — y — 2 = 0 3 x + z = 0
Чтобы доказать параллельность заданной прямой x — y — 2 = 0 3 x + z = 0 с плоскостью 6 x — 5 y + 1 3 z — 2 3 = 0 , необходимо уравнения преобразовать в систему уравнений x — y — 2 = 0 3 x + z = 0 6 x — 5 y + 1 3 z — 2 3 = 0 .
Видим, что она не решаема, значит прибегнем к методу Гаусса.
Расписав уравнения, получаем, что 1 — 1 0 2 3 0 1 0 6 — 5 1 3 2 3
1 — 1 0 2 0 3 1 — 6 0 1 1 3 — 11 1 3
1 — 1 0 2 0 3 1 — 6 0 0 0 — 9 1 3 .
Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.
Делаем вывод, что прямая x — 1 = y + 2 — 1 = z 3 и плоскость 6 x — 5 y + 1 3 z — 2 3 = 0 параллельны, так как было выполнено необходимое и достаточное условие для параллельности плоскости с заданной прямой.
Ответ: прямая и плоскость параллельны.
💥 Видео
Взаимное расположение прямых в пространстве. 10 класс.Скачать
Параллельность прямых. 10 класс.Скачать
Параллельные прямые | Математика | TutorOnlineСкачать
Параллельность прямой и плоскости. 10 класс.Скачать
10 класс, 5 урок, Параллельность трех прямыхСкачать
10 класс, 4 урок, Параллельные прямые в пространствеСкачать
Параллельные прямые. 6 класс.Скачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать
Следы прямой Взаимное положение двух прямыхСкачать
Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать
Параллельность прямой к плоскостиСкачать
Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
10 класс, 7 урок, Скрещивающиеся прямыеСкачать
10 класс, 3 урок, Некоторые следствия из аксиомСкачать
10 класс, 10 урок, Параллельные плоскостиСкачать