Длины отрезков касательных к окружности

Касательная к окружности

Длины отрезков касательных к окружности

О чем эта статья:

Видео:Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Длины отрезков касательных к окружности

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Длины отрезков касательных к окружности

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Длины отрезков касательных к окружности

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Длины отрезков касательных к окружности

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Длины отрезков касательных к окружности

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Длины отрезков касательных к окружности

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Длины отрезков касательных к окружности

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Длины отрезков касательных к окружности

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Длины отрезков касательных к окружности

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Длины отрезков касательных к окружности

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Длины отрезков касательных к окружности

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Длины отрезков касательных к окружности

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Длины отрезков касательных к окружностиОтрезки и прямые, связанные с окружностью
Длины отрезков касательных к окружностиСвойства хорд и дуг окружности
Длины отрезков касательных к окружностиТеоремы о длинах хорд, касательных и секущих
Длины отрезков касательных к окружностиДоказательства теорем о длинах хорд, касательных и секущих
Длины отрезков касательных к окружностиТеорема о бабочке

Длины отрезков касательных к окружности

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьДлины отрезков касательных к окружности
КругДлины отрезков касательных к окружности
РадиусДлины отрезков касательных к окружности
ХордаДлины отрезков касательных к окружности
ДиаметрДлины отрезков касательных к окружности
КасательнаяДлины отрезков касательных к окружности
СекущаяДлины отрезков касательных к окружности
Окружность
Длины отрезков касательных к окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругДлины отрезков касательных к окружности

Конечная часть плоскости, ограниченная окружностью

РадиусДлины отрезков касательных к окружности

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаДлины отрезков касательных к окружности

Отрезок, соединяющий две любые точки окружности

ДиаметрДлины отрезков касательных к окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяДлины отрезков касательных к окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяДлины отрезков касательных к окружности

Прямая, пересекающая окружность в двух точках

Видео:Касательные к окружностиСкачать

Касательные к окружности

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеДлины отрезков касательных к окружностиДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыДлины отрезков касательных к окружностиЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныДлины отрезков касательных к окружностиБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиДлины отрезков касательных к окружностиУ равных дуг равны и хорды.
Параллельные хордыДлины отрезков касательных к окружностиДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Длины отрезков касательных к окружности

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыДлины отрезков касательных к окружности

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыДлины отрезков касательных к окружности

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиДлины отрезков касательных к окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныДлины отрезков касательных к окружности

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиДлины отрезков касательных к окружности

У равных дуг равны и хорды.

Параллельные хордыДлины отрезков касательных к окружности

Дуги, заключённые между параллельными хордами, равны.

Видео:№641. Отрезки АВ и АС являются отрезками касательных к окружности с центром О, проведенными изСкачать

№641. Отрезки АВ и АС являются отрезками касательных к окружности с центром О, проведенными из

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Длины отрезков касательных к окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

ФигураРисунокТеорема
Пересекающиеся хордыДлины отрезков касательных к окружности
Касательные, проведённые к окружности из одной точкиДлины отрезков касательных к окружности
Касательная и секущая, проведённые к окружности из одной точкиДлины отрезков касательных к окружности
Секущие, проведённые из одной точки вне кругаДлины отрезков касательных к окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Длины отрезков касательных к окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Пересекающиеся хорды
Длины отрезков касательных к окружности
Касательные, проведённые к окружности из одной точки
Длины отрезков касательных к окружности
Касательная и секущая, проведённые к окружности из одной точки
Длины отрезков касательных к окружности
Секущие, проведённые из одной точки вне круга
Длины отрезков касательных к окружности
Пересекающиеся хорды
Длины отрезков касательных к окружности

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Длины отрезков касательных к окружности

Касательные, проведённые к окружности из одной точки

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Секущие, проведённые из одной точки вне круга

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Видео:Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Тогда справедливо равенство

Длины отрезков касательных к окружности

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Длины отрезков касательных к окружности

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Длины отрезков касательных к окружности

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Длины отрезков касательных к окружности

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Длины отрезков касательных к окружности

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Длины отрезков касательных к окружности

откуда и вытекает требуемое утверждение.

Видео:Построение касательной к окружностиСкачать

Построение касательной к окружности

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Воспользовавшись теоремой 1, получим

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Воспользовавшись равенствами (1) и (2), получим

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Длины отрезков касательных к окружности

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Длины отрезков касательных к окружности

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:Свойство отрезков касательныхСкачать

Свойство отрезков касательных

Касательная к окружности

Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.

Понятие касательной к окружности и основные свойства касательной проиллюстрированы ниже на рисунке.

Длины отрезков касательных к окружности

. Угол равен , где — центр окружности. Его сторона касается окружности. Найдите величину меньшей дуги окружности, заключенной внутри этого угла. Ответ дайте в градусах.

Длины отрезков касательных к окружности

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол — прямой. Из треугольника получим, что угол равен градуса. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги — тоже градуса.

. Найдите угол , если его сторона касается окружности, — центр окружности, а большая дуга окружности, заключенная внутри этого угла, равна . Ответ дайте в градусах.

Длины отрезков касательных к окружности

Это чуть более сложная задача. Центральный угол опирается на дугу , следовательно, он равен градусов. Тогда угол равен . Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол — прямой. Тогда угол равен .

. Хорда стягивает дугу окружности в . Найдите угол между этой хордой и касательной к окружности, проведенной через точку . Ответ дайте в градусах.

Длины отрезков касательных к окружности

Проведем радиус в точку касания, а также радиус . Угол равен . Треугольник — равнобедренный. Нетрудно найти, что угол равен градуса, и тогда угол равен градусов, то есть половине угловой величины дуги .

Получается, что угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.

. К окружности, вписанной в треугольник , проведены три касательные. Периметры отсеченных треугольников равны , , . Найдите периметр данного треугольника.

Длины отрезков касательных к окружности

Вспомним еще одно важное свойство касательных к окружности:
Отрезки касательных, проведенных из одной точки, равны.
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника складывается из периметров отсеченных треугольников.

Ты нашел то, что искал? Поделись с друзьями!

Вот более сложная задача из вариантов ЕГЭ:

. Около окружности описан многоугольник, площадь которого равна . Его периметр равен . Найдите радиус этой окружности.

Длины отрезков касательных к окружности

Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку — и проведите перпендикулярные сторонам радиусы в точки касания.

Соедините точку с вершинами . Получились треугольники и .
Очевидно, что площадь многоугольника .
Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?

🎥 Видео

Касательная и секущая к окружности.Скачать

Касательная и секущая к окружности.

Построение касательной к окружностиСкачать

Построение касательной к окружности

Построение касательной к окружности.Скачать

Построение касательной к окружности.

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

ОГЭ Задание 24 Свойство отрезков касательныхСкачать

ОГЭ Задание 24 Свойство отрезков касательных

Геометрия Из одной точки проведены две касательные к окружности. Длина каждой касательной 12 см, аСкачать

Геометрия Из одной точки проведены две касательные к окружности. Длина каждой касательной 12 см, а

50. Геометрия на ЕГЭ по математике. Теорема об отрезках касательных к окружности.Скачать

50.  Геометрия на ЕГЭ по математике. Теорема об отрезках касательных к окружности.

На отрезке AB выбрана точка C так, что AC=75 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

На отрезке AB выбрана точка C так, что AC=75 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Соотношения между длинами хорд, отрезков касательных и секущих | Геометрия 8-9 классыСкачать

Соотношения между длинами хорд, отрезков касательных и секущих | Геометрия 8-9 классы

#2str. Счет отрезковСкачать

#2str. Счет отрезков

Отрезки касательных. Применение Чевы и Ван-Обеля. Точка Жергонна. (Геометрические конструкции)Скачать

Отрезки касательных.  Применение Чевы и Ван-Обеля.  Точка Жергонна. (Геометрические конструкции)
Поделиться или сохранить к себе: