Два вектора стороны треугольника

Сложение векторов

Сумма векторов

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Свойства сложения векторов:

Для любых векторов

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

3) свойство прибавления нулевого вектора:

Два вектора стороны треугольника

4) сумма противоположных векторов равна нулевому вектору:

Два вектора стороны треугольника

Достаточно сравнить координаты векторов, стоящих в левой и правой частях этих равенств:

Два вектора стороны треугольника

Два вектора стороны треугольника

Так как соответствующие координаты равны, то эти векторы равны.

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

(О сложении векторов)

Каковы бы ни были точки A, B, C, имеет место векторное равенство:

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Два вектора стороны треугольника

Что и требовалось доказать.

Правило треугольника построения суммы двух векторов

Чтобы построить сумму двух векторов по правилу треугольника, надо от конца одного вектора отложить другой вектор и провести вектор от начала первого к концу второго вектора.

Два вектора стороны треугольникаНапример,

Два вектора стороны треугольника

(то есть это правило следует из теоремы о сложении векторов).

Правило параллелограмма построения суммы двух векторов

Чтобы построить сумму двух векторов по правилу параллелограмма, надо отложить эти векторы от общего начала. Сумма векторов есть диагональ параллелограмма, построенного на этих векторах и имеющая с ними общее начало.

Два вектора стороны треугольникаНапример,

Два вектора стороны треугольника

Правило параллелограмма построения суммы векторов применяется лишь для неколлинеарных векторов.

При любом способе построения суммы неколлинеарных векторов получим одинаковый результат.

Два вектора стороны треугольникаПостроить сумму векторов

Два вектора стороны треугольника

Два вектора стороны треугольника

1) Чтобы построить сумму векторов по правилу треугольника, отложим от конца вектора

Два вектора стороны треугольника

Два вектора стороны треугольника

Сумма этих векторов равна вектору, проведённому от начала первого вектора (a) к концу второго (b).

2) Чтобы построить сумму векторов по правилу параллелограмма, отложим векторы

Два вектора стороны треугольника

от общего начала.

Достроим на этих векторах параллелограмм.

Два вектора стороны треугольникаСумма

Два вектора стороны треугольника

равна вектору, лежащему на диагонали параллелограмма и имеющему с ними общее начало.

1) Сумма двух сонаправленных коллинеарных векторов равна вектору, сонаправленному этим векторам, длина которого равна сумме длин данных векторов.

Два вектора стороны треугольника

2) Сумма двух противоположно направленных векторов равна вектору, направление которого совпадает с направлением вектора, модуль которого больше, а длина равна разности этих векторов.

Два вектора стороны треугольника

Фактически в обоих случаях мы используем правило треугольника сложения векторов:

от конца первого вектора откладываем вектор, равный второму, и строим сумму как вектор в направлении от начала первого вектора к концу второго.

Из неравенства треугольника следует ещё два свойства сложения векторов:

Содержание
  1. Треугольник. Формулы определения и свойства треугольников.
  2. Определение треугольника
  3. Классификация треугольников
  4. 1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
  5. 2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
  6. 3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
  7. 4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
  8. 5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
  9. 6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
  10. Свойства треугольника
  11. 1.Свойства углов и сторон треугольника.
  12. 2.Теорема синусов.
  13. 3. Теорема косинусов.
  14. 4. Теорема о проекциях
  15. Медианы треугольника
  16. Свойства медиан треугольника:
  17. Формулы медиан треугольника
  18. Скалярное произведение векторов
  19. Основные определения
  20. Угол между векторами
  21. Скалярное произведение векторов
  22. Скалярное произведение в координатах
  23. Формулы скалярного произведения векторов заданных координатами
  24. Свойства скалярного произведения
  25. Примеры вычислений скалярного произведения
  26. 💥 Видео

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Видео:егэ векторы решу егэ все задания №2 профильСкачать

егэ векторы решу егэ все задания №2 профиль

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Два вектора стороны треугольника

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

Два вектора стороны треугольника

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

Два вектора стороны треугольника

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Два вектора стороны треугольника

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

Два вектора стороны треугольника

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

Два вектора стороны треугольника

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Два вектора стороны треугольника

Видео:СУММА ВЕКТОРОВ правило треугольникаСкачать

СУММА ВЕКТОРОВ правило треугольника

Свойства треугольника

1.Свойства углов и сторон треугольника.

Два вектора стороны треугольника

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c
sin αsin βsin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Видео:Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Два вектора стороны треугольника

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO=BO=CO=2
ODOEOF1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Два вектора стороны треугольника

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

Видео:Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Скалярное произведение векторов

Два вектора стороны треугольника

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Два вектора стороны треугольника

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Два вектора стороны треугольника

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Два вектора стороны треугольника

Также векторы могут образовывать тупой угол. Это выглядит так:

Два вектора стороны треугольника

Видео:Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)Скачать

Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Два вектора стороны треугольника

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Два вектора стороны треугольника
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

    Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Два вектора стороны треугольника

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Два вектора стороны треугольника

    Два вектора стороны треугольника

    то последнее равенство можно переписать так:

    Два вектора стороны треугольника

    а по первому определению скалярного произведения имеем

    Два вектора стороны треугольника

    Два вектора стороны треугольника

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Два вектора стороны треугольника
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:Сложение векторов. Правило параллелограмма. 9 класс.Скачать

    Сложение векторов. Правило параллелограмма. 9 класс.

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:ПРОФИЛЬ 2024. Задание 2. Векторы. Все задачи с правильным (равносторонним) треугольником.Скачать

    ПРОФИЛЬ 2024. Задание 2. Векторы. Все задачи с правильным (равносторонним) треугольником.

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Два вектора стороны треугольника

    Два вектора стороны треугольника

    Два вектора стороны треугольника

    Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

    По силам каждому ★ Найдите стороны треугольника на рисунке

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Два вектора стороны треугольника

    По свойству дистрибутивности скалярного произведения имеем

    Два вектора стороны треугольника

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Два вектора стороны треугольника

    В силу свойства коммутативности последнее выражение примет вид

    Два вектора стороны треугольника

    Итак, после применения свойств скалярного произведения имеем

    Два вектора стороны треугольника

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Два вектора стороны треугольника

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Два вектора стороны треугольника



      Введем систему координат.
      Два вектора стороны треугольника

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Два вектора стороны треугольника

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Два вектора стороны треугольника
  • Найдем длины векторов →AB1 и →BC1:
    Два вектора стороны треугольника
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Два вектора стороны треугольника
  • Найдем косинус угла между прямыми AB1 и BC1:
    Два вектора стороны треугольника
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Два вектора стороны треугольника

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Два вектора стороны треугольника

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Два вектора стороны треугольника

    Вычислим скалярное произведение:

    Два вектора стороны треугольника

    Вычислим длины векторов:

    Два вектора стороны треугольника

    Найдем косинус угла:

    Два вектора стороны треугольника

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Два вектора стороны треугольника

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Два вектора стороны треугольника

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    💥 Видео

    Математика без Ху!ни. Смешанное произведение векторовСкачать

    Математика без Ху!ни. Смешанное произведение векторов

    9 класс, 15 урок, Решение треугольниковСкачать

    9 класс, 15 урок, Решение треугольников

    Сложение векторов. 9 класс.Скачать

    Сложение векторов. 9 класс.

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    Задача о векторах, построенных на медиане, биссектрисе и высоте треугольникаСкачать

    Задача о векторах, построенных на медиане, биссектрисе и высоте треугольника

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

    Соотношения между сторонами и углами треугольника. 7 класс.Скачать

    Соотношения между сторонами и углами треугольника. 7 класс.
    Поделиться или сохранить к себе: