Пусть X — заданное многообразие, T — касательное расслоение, то есть отображение, которое каждой точке X сопоставляет касательное пространство в данной точке T | X , тогда сечение касательного расслоения является векторным полем.
Таким образом, векторное поле — это отображение, которое ставит каждой точке многообразия в соответствие вектор из касательного пространства в данной точке.
- Частные случаи векторных полей
- Векторные поля на прямой
- Векторные поля на плоскости
- Векторные поля в трёхмерном пространстве
- Интегральные кривые (силовые линии)
- Общая формулировка
- [править] Частные случаи
- [править] Формула Ньютона — Лейбница
- [править] Теорема Грина
- Циркуляция векторного поля. Ротор вектора. Теорема Стокса
- Пример 3:
- Правила вычисления ротора
- Теории поля с примерами решения и образцами выполнения
- Скалярное поле
- Производная по направлению
- Векторное поле
- Поток поля
- Дивергенция поля. Формула Остроградского-Гаусса
- Циркуляция поля
- Ротор поля. Формула Стокса
- Оператор Гамильтона
- Векторные дифференциальные операции второго порядка
- Некоторые свойства основных классов векторных полей
- Соленоидальное поле
- Потенциальное поле
- Гармоническое поле
- 🌟 Видео
Видео:Александр Чирцов: ротор, дивергенция и градиентСкачать

Частные случаи векторных полей
Векторные поля на прямой
Любую вещественнозначную функцию вещественного переменного можно интерпретировать как одномерное векторное поле.
Векторные поля на плоскости
Если 

Векторные поля в трёхмерном пространстве
Если 

В трёхмерном пространстве имеют смысл следующие характеристики векторного поля
 
где точка означает скалярное произведение, 


Циркуляция — интеграл по замкнутому контуру:
 
где подынтегральное выражение совпадает с описанным чуть выше, а отличие состоит в пути интегрирования C, который в данном случае по определению замкнут, что обозначается кружком на знаке интеграла.
Поток векторного поля 

где F n — проекция вектора поля на нормаль к поверхности, 
Аналогом производной для векторного поля выступает тензор частных производных (якобиан), который в декартовых координатах имеет вид:
 
Дивергенция векторного поля — след такого тензора производных. Она не зависит от системы координат (является инвариантом преобразований координат, скаляром), а в прямоугольных декартовых координатах вычисляется по формуле:
 
Это же выражение можно записать с использованием символического оператора набла
 
Теорема Остроградского-Гаусса позволяет вычислить поток векторного поля с помощью объёмного интеграла от дивергенции поля.
Ротор — векторная характеристика вихревой составляющей векторного поля. Это вектор с координатами:

где i, j и k — единичные орты для осей x, y и z соответственно.
Для удобства запоминания можно условно представлять ротор как векторное произведение:
 
Градиент — важнейшая и простейшая операция, позволяющая получить векторное поле из скалярного поля. Полученное применением такой операции к скалярному полю fвекторное поле называется градиентом f:
 
или, записывая с помощью наблы:
 
Векторное поле, дивергенция которого всюду равна нулю, называется соленоидальным; оно может быть представлено как ротор некоторого другого векторного поля.
Векторное поле, ротор которого равен нулю в любой точке, называется потенциальным (безвихревым); оно может быть представлено как градиент некоторого скалярного поля (потенциала).
Имеет место теорема Гельмгольца: если всюду в области D у векторного поля определены дивергенция и ротор, то это поле может быть представлено в виде суммы потенциального и соленоидального поля.
Векторное поле, у которого и дивергенция, и ротор всюду равны нулю, называется гармоническим; его потенциал представляет собой гармоническую функцию.
Интегральные кривые (силовые линии)
Силовой линией (векторной линией или интегральной кривой, в зависимости от контекста) для поля 

 
Для силовых полей силовые линии наглядно показывают направление воздействия полевых сил.
Если в достаточно малой области пространства поле нигде не обращается в нуль, то через каждую точку этой области проходит одна и только одна силовая линия. Точки, где вектор поля нулевой — особые, в них направление поля не определено, и поведение силовых линий в окрестности этих точек может быть различным: возможно, через особую точку проходит бесконечно много силовых линий, но возможно, что не проходит ни одна.
Векторное поле называется полным, если его интегральные кривые определены на всём многообразии.
Видео:#8 Ротор/Дивергенция/ГрадиентСкачать

Общая формулировка
Пусть на ориентируемом многообразии M размерности n заданы ориентируемое p -мерное подмногообразие σ и дифференциальная форма ω степени p − 1 класса C 1 (

 
где dω обозначает внешний дифференциал формы ω .
Теорема распространяется на линейные комбинации подмногообразий одной размерности, так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологией де Рама и гомологией циклов многообразия M .
Видео:Дивергенция векторного поляСкачать

[править] Частные случаи
[править] Формула Ньютона — Лейбница
Пусть дана кривая l , соединяющая две точки a и b (одномерная цепь) в многообразии произвольной размерности. Форма ω нулевой степени класса C 1 — это дифференцируемая функция f . Формула Стокса тогда записывается в виде
 
[править] Теорема Грина
Пусть M — плоскость, а D — некоторая её ограниченная область с кусочно-гладкой жордановой границей. Форма первой степени, записанная в координатах x и y — это выражение 
 
Друзья! Приглашаем вас к обсуждению. Если у вас есть своё мнение, напишите нам в комментарии.
Видео:Оператор Набла. Градиент. Дивергенция. Ротор. Лапласиан.Скачать

Циркуляция векторного поля. Ротор вектора. Теорема Стокса
Содержание:
 
 
 
 
 
 
 
По этой ссылке вы найдёте полный курс лекций по математике:
Пусть в некоторой области G задано непрерывное векторное поле а ) к и замкнутый ориентированный контур L. Определение 1. Циркуляцией вектора а по замкнутому контуру L называется криволинейный интеграл 2-го рода от оектора а по контуру L Здесь dr — вектор, длина которого равна дифференциалу дуги L, а направление совпадаете направлением касательной к L, оп- Рис. 31 ределяемымориентацией контура (рис. 31); символ f означает, что интеграл берется по зам1«угому контуру L. ь
Пример 1. вычислить циркуляцию векторного поля вдоль эллипса L: По определению циркуляции имеем Параметрические уравнения данного эллипса имеют вид: , и, значит, . Подставляя эти выражения в формулу (2), найдем Циркуляция векторного поля. Ротор вектора Теорема Стокса Ротор (вихрь) векторного поля Инвариантное определение ротора поля Физический смысл ротора поля Правила вычисления ротора 8.1.
Ротор (вихрь) векторного поля Рассмотрим поле вектора Р, Q, R которого непрерывны и имеют непрерывные частные производные первого порядка по всем своим аргументам. Огределенив 2. Ротором вектора »(М) называется вектор, обозначаемый символом rot а и определяемый равенством или, в символической, удобной для запоминания форме, Этот определитель раскрывают по элементам первой строки, при этом операции умножения элементов второй строки на элементы третьей строки понимаются как операции дифференцирования, например,
Определение 3. Если в некоторой области G имеем rot а = 0, то поле вектора а в области G называете я безвихревым. Пример 2. Найти ротор вектора 4 Согласно формуле (3) имеем Так как rot а — вектор, то мы можем рассматривать векторное поле — поле ротора вектора а. Предполагая, что координаты вектора а имеют непрерывные частные производные второго порядка, вычислим дивергенцию вектора rot а. Получим Таким образом, поле вектора rot а соленоида л ьно.
Теорема 7 (Стокса). Циркуляция вектора а вдоль ориентированного замкнутого контура L равна потоку ротора этого вектора через любую поверхность Е, натянутую на контур L, При этом предполагается, что координаты вектора а имеют непрерывные частные производные в некоторой области G пространства, содержащей поверхность Е, и что ориентация орта нормали п° к поверхности ЕС G согласована с ориентацией контура L так, что из конца нормши обход контура в заданном направлении виден совершающимся против часовой стрелки.
Учитывая, что , и пользуясь определением ротора (3), перепишем формулу (4) в следующем виде: Рассмотрим сначала случай, когда гладкая поверхность Е и ее контур L однозначно проектируются на область D плоскости хОу и ее границу — контур А соответственно (рис. 32). Ориентация контура L порождает определенную ориентацию контура А. Для определенности будем считать, что контур L ориентирован так, что поверхность Е остается слева, так что веетор нормали п к поверхности Е составдя етсосью Oz острый угол 7 (cos 7 >0).
Возможно вам будут полезны данные страницы:
Пусть — уравнение поверхности Е и функция ф(х>у) непрерывна и имеет непрерывные частные производные gf и ^ в замкнутой области D.
Рассмотрим интеграл Линия L лежит на поверхности Е. Поэтому, пользуясь уравнением этой поверхности , мы можем заменить г под знаком интеграла на ^(ж, у). Координаты перемсннойточки кривой А равны координатам соответствующей точки на кривой L, а потому интегрирование по L можно заменить интегрированием по А, Применим к интегралу, стоящему справа, формулу Грина.
Имеем Перейдем теперь от интеграла по области D к интегралу по поверхности Е. Так как dS = cos 7 • da, то из формулы (8) получим, что Вектор нормали п° к поверхности Е определяется выражением к. Отсюда видно, что . Поэтому равенсгво (9) можно переписать так: Считая Е гладкой поверхностью, однозначно проектирующейся на все три координатные плоскости, аналогично убеждаемся в справедливости формул Циркуляция векторного поля.
Ротор вектора Теорема Стокса Ротор (вихрь) векторного поля Инвариантное определение ротора поля Физический смысл ротора поля Правила вычисления ротора Складывая равенства почленно, получим формулу Стокса (5), или, короче, Замечание 1. Мы показали, что поле вектора rote — соленоидальное, и потому поток вектора rota не зависит от вида поверхности Е, натянутой на контур L. Замечание 2. Формула (4) выведена в предположении, что поверхность £ однозначно проектируется на все три координатные плоскости. Бели это условие не выполнено, то разбиваем £ на частя так, чтобы каждая часть указанному условию удовлетворяла, а затем пользуемся аддитивностью интегралов.
Пример 3:
Вычислить циркуляцию вектора по линии 1) пользуясь определением; 2) по теореме Стокса. 4 1) Зададим линию L параметрически: Тогда 2) Найдем rota: Натянем на контур L кусок плосхости Тогда . Инвариантное определение ротора поля Из теоремы Стокса можно получить инвариантное определение ротора поля, не связанное с выбором системы координат. Теорема 8.
Проекция ротора а на любое направление не зависит от выбора системы координат и равна поверхностной плотности циркуляции вектора а по контуру площадки, перпендикулярной этому направлению, Здесь (Е) — плоская площадка, перпендикулярная вектору л; 5 — площадь этой площадки; L — контур площадки, ориентированный так, чтобы обход контура был виден из конца вектора п против хода часовой стрелки; (Е) М означает, что площадка (Е) стягивается к точке М, в которой рассматривается вектор rot а, причем вектор нормали п к этой площадке остается все время одним и тем же (рис. 33). 4
Применим сначала к циркуляции (a,dr) вектора а теорему Стокса, а затем к полученному двойному интегралу — теорему о среднем значении: откуда (скалярное произведение берется в некоторой средней точке Мф площадки (Е)). Пристягивании площадки (Е) кточке М средняяточка Л/ср тоже стремится кточ-ке М и, в силу предполагаемой непрерывности частных производных от координат вектора а (а значит, и непрерывности rot а), мы получаем Поскольку проекция вектора rot а на произвольное направление не зависитотвы-бора системы координат,то и сам вектор rota инвариантен относительно этого выбора.
Отсюда получаем следующее инвариантное определение ротора поля: ротор поля есть вектор, длина которого равна наибольшей поверхностной плотности циркуляции в данной точке, направленный перпендикулярно той площадке, на которой эта наибольшая плотность циркуляции достигается; при этом ориентация вектора rota согласуется с ориентацией контура, при которой циркуляция положительна, по правилу правого винта. 8.3.
| Физический смысл ротора поля Пустьтвердое | 
тело вращается вокруг неподвижной оси I с угловой скоростью и. Не нарушая общности, можно считать, что ось I совпадает с осью Oz (рис. 34). Пусть М(г) — изучаемая точка тела, где Вектор угловой скорости в нашем случае равен из = wk, вычислим вектор v линейной скорости точки М, Отсюда Циркуляция векторного поля. Ротор вектора Теорема Стокса Ротор (вихрь) векторного поля Инвариантное определение ротора поля Физический смысл ротора поля.
Правила вычисления ротора
Итак, вихрь поля скоростей вращающегося твердого тела одинаков во всех точках поля, параллелен оси вращения и равен удвоенной угловой скорости вращения. 8.4. Правила вычисления ротора 1. Ротор постоянного вектора с равен нулевому вектору, 2. Ротор обладает свойством линейности постоянные числа. 3. Ротор произведения скалярной функции и<М) на векторную а(М) вычисляется по формуле
Присылайте задания в любое время дня и ночи в ➔  
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Ротор векторного поляСкачать

Теории поля с примерами решения и образцами выполнения
Теория поля — крупный раздел физики, механики, математики, в котором изучаются скалярные, векторные, тензорные поля.
К рассмотрению скалярных и векторных полей приводят многие задачи физики, электротехники, математики, механики и других технических дисциплин. Изучение одних физических полей способствует изучению и других. Так, например, силы всемирного тяготения, магнитные, электрические силы — все они изменяются обратно пропорционально квадрату расстояния от своего источника; диффузия в растворах происходит по законам, общим с распространением тепла в различных средах; вид силовых магнитных линий напоминает картину обтекания препятствий жидкостью и т. д.
Математическим ядром теории поля являются такие понятия, как градиент, поток, потенциал, дивергенция, ротор, циркуляция и другие. Эти понятия важны и в усвоении основных идей математического анализа функций многих переменных.
Полем называется область V пространства, в каждой точке которой определено значение некоторой величины. Если каждой точке М этой области соответствует определенное число U = U(M), говорят, что в области определено (задано) скалярное поле (или функция точки). Иначе говоря, скалярное поле — это скалярная функция U(М) вместе с ее областью определения. Если же каждой точке М области пространства соответствует некоторый вектор 
Примерами скалярных полей могут быть поля температуры (воздуха, тела, …), атмосферного давления, плотности (массы, воздуха, …), электрического потенциала и т.д. Примерами векторных полей являются поле силы тяжести, поле скоростей частиц текущей жидкости (ветра), магнитное поле, поле плотности электрического тока и т. д.
Если функция 
Далее будем рассматривать только стационарные поля.
Если V — область трехмерного пространства, то скалярное поле U можно рассматривать как функцию трех переменных х, у, z (координат точки М):
 
(Наряду с обозначениями 

Если скалярная функция U (М) зависит только от двух переменных, например х и у, то соответствующее скалярное поле U(х; у) называют плоским.
Аналогично: вектор 
Вектор 
 
где P(x;y;z), Q(x;y;z ), R(x;y;z) — проекции вектора 

Векторное поле называется однородным, если 
В дальнейшем будем предполагать, что скалярные функции (U(x;y;z) — определяющая скалярное поле, P(x;y;z), Q(x;y;z) и R(x; у; z) — задающие векторное поле) непрерывны вместе со своими частными производными.
Пример:
Функция 


Пример:
Найти поле линейной скорости 

Решение:
Угловую скорость представим в виде вектора 
 
Построим радиус-вектор 
Численное значение линейной скорости 


Вектор скорости 



 
или 
 
Поле линейных скоростей 
Видео:Александр Чирцов про дивергенцию и роторСкачать

Скалярное поле
Поверхности и линии уровня:
Рассмотрим скалярное поле, задаваемое функцией U = U(x,y,z). Для наглядного представления скалярного поля используют поверхности и линии уровня.
Поверхностью уровня скалярного поля называется геометрическое место точек, в которых функция U(М) принимает постоянное значение, т. е.
 
Давая в уравнении (70.1) величине с различные значения, получим различные поверхности уровня, которые в совокупности как бы расслаивают поле. Через каждую точку поля проходит только одна поверхность уровня. Ее уравнение можно найти путем подстановки координат точки в уравнение (70.1).
Для скалярного поля, образованного функцией
 
поверхностями уровня является множество концентрических сфер с центрами в начале координат: 

Для равномерно раскаленной нити поверхности уровня температурного поля (изотермические поверхности) представляют собой круговые цилиндры, общей осью которых служит нить.
В случае плоского поля U — U(х; у) равенство U(x; у) = с представляет собой уравнение линии уровня поля, т. е. линия уровня —это линия на плоскости Оху, в точках которой функция U (х; у) сохраняет постоянное значение.
В метеорологии, например, сети изобар и изотерм (линии одинаковых средних давлений и одинаковых средних температур) являются линиями уровня и представляют собой функции координат точек местности.
Линии уровня применяются в математике при исследовании поверхностей методом сечений (см. п. 12.9).
Производная по направлению
Для характеристики скорости изменения поля U =U(М) в заданном направлении введем понятие «производной по направлению».
Возьмем в пространстве, где задано поле U = U(x;y;z), некоторую точку М и найдем скорость изменения функции U при движении точки М в произвольном направлении 

Приращение функции U, возникающее при переходе от точки М к некоторой точке 

 
 
 
 
Производной от функции U = U(M) в точке М по направлению 
 
Производная по направлению 



где 

 
 
Переходя к пределу при 
 
В случае плоского поля U = U(x;y) имеем:
 
Формула (70.2) принимает вид:
 
Замечание:
Понятие производной по направлению является обобщением понятия частных производных 


Пример:
Найти производную функции 
Решение:
Находим вектор 
 
Находим частные производные функции и вычисляем их значения в точке М:
 
Следовательно, по формуле (70.2) имеем:
 
Поскольку jj^- Градиент скалярного поля и его свойства
В каком направлении 

Можно заметить, что правая часть равенства (70.2) представляет собой скалярное произведение единичного вектора
 
и некоторого вектора
 
Вектор, координатами которого являются значения частных производных функции U(x,y,z) в точке M(x;y,z), называют градиентом функции и обозначают gradU, т. е. 
 
Отметим, что grad U есть векторная величина. Говорят: скалярное поле U порождает векторное поле градиента U. Теперь равенство (70.2) можно записать в виде
 
 
где 

 
Из формулы (70.3) сразу следует, что производная по направлению достигает наибольшего значения, когда 
 
В этом состоит физический смысл градиента. На указанном свойстве градиента основано его широкое применение в математике и других дисциплинах.
Приведем важные свойства градиента функции.
1.Градиент направлен по нормали к поверхности уровня, проходящей через данную точку.
Действительно, по любому направлению вдоль поверхности уровня 
 
Доказываются эти свойства на основании определения градиента. Докажем, например, последнее свойство. Имеем:
 
Замечание. Приведенные свойства градиента функции остаются справедливыми и для плоского поля.
Пример:
Найти наибольшую скорость возрастания функции
 
Решение:
 
Наибольшая скорость возрастания функции равна
 
Отметим, что функция U будет убывать с наибольшей скоростью 

Видео:Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать

Векторное поле
Векторные линии поля:
Рассмотрим векторное поле, задаваемое вектором 
Векторной линией поля 

Это понятие для конкретных полей имеет ясный физический смысл. Например, в поле скоростей текущей жидкости векторными линиями будут линии, по которым движутся частицы жидкости (линии тока); для магнитного поля векторными (силовыми) линиями будут линии, выходящие из северного полюса и оканчивающиеся в южном.
Совокупность всех векторных линий поля, проходящих через некоторую замкнутую кривую, называется векторной трубкой.
Изучение векторного поля обычно начинают с изучения расположения его векторных линий. Векторные линии поля
 
описываются системой дифференциальных уравнений вида
 
Действительно, пусть PQ — векторная линия поля, 


Пример:
Найти векторные линии поля линейных скоростей тела, вращающегося с постоянной угловой скоростью 
Решение:
Это поле определено вектором 
 
Интегрируя, получим: 
Поток поля
Пусть векторное поле образовано вектором (71.1). Для наглядности будем считать 
Выберем определенную сторону поверхности S. Пусть 




 
Будем приближенно считать каждую площадку плоской, а вектор 







 
Точное значение искомого количества жидкости получим, взяв предел найденной суммы при неограниченном увеличении числа элементарных площадок и стремлении к нулю их размеров (диаметров 
 
Независимо от физического смысла поля 
Потоком вектора 
 
Рассмотрим различные формы записи потока вектора. Так как
 
 
где 

Иногда формулу (71.3) записывают в виде
 
где вектор 
 
— проекции вектора 

 
Используя взаимосвязь поверхностных интегралов I и II рода (см. формулу (58.8)), поток вектора можно записать как
 
Отметим, что поток К вектора а есть скалярная величина. Величина К равна объему жидкости, которая протекает через поверхность S за единицу времени. В этом состоит физический смысл потока (независимо от физического смысла поля).
Особый интерес представляет случай, когда поверхность замкнута и ограничивает некоторый объем V. Тогда поток вектора записывается в виде
 
В этом случае за направление вектора п обычно берут направление внешней нормали и говорят о потоке изнутри поверхности S (см. рис. 272).
Если векторное поле 



При этом если К > 0, то из области V вытекает больше жидкости, чем в нее втекает. Это означает, что внутри области имеются дополнительные источники.
Если К 
Пример:
Найти поток вектора 
Решение:
Поток найдем методом проектирования на три координатные плоскости. Для этого воспользуемся формулой (71.5). В нашем случае Р = z, Q = —х, R = у. Имеем:
 
Расчленим этот поверхностный интеграл на три слагаемых, затем сведем их вычисление к вычислению двойных интегралов. Нормаль к верхней стороне треугольника образует с осью Ох тупой угол, с осью Оу — тупой, а с осью Oz — острый угол. (Единичный вектор данной плоскости есть 

 
Итак, 
 
В результате имеем: 
 
Пример:
Найти поток радиус-вектора 
Решение:
 
Очевидно, что
 
т. к. 
Дивергенция поля. Формула Остроградского-Гаусса
Важной характеристикой векторного поля (71.1) является так называемая дивергенция, характеризующая распределение и интенсивность источников и стоков поля.
Дивергенцией (или расходимостью) векторного поля
 
в точке М называется скаляр вида 

 
Отметим некоторые свойства дивергенции.
- Если — постоянный вектор, то 
- где с = const. 
- т. е. дивергенция суммы двух векторных функций равна сумме дивергенции слагаемых. 
- Если U — скалярная функция, — вектор, то 
Эти свойства легко проверить, используя формулу (71.6). Докажем, например, справедливость свойства 4.
Так как 
 
Используя понятия потока и дивергенции векторного поля, запишем известную в анализе (см. (58.9)) формулу Остроградского-Гаусса
 
в так называемой векторной форме.
Рассматривал область V, ограниченную замкнутой поверхностью S, в векторном поле (71.1), можно утверждать, что левая часть формулы (71.7) есть поток вектора 

 
(в котором она чаще всего и встречается).
Формула Остроградского-Гаусса означает, что поток векторного поля через замкнутую поверхность S (в направлении внешней нормали, т. е. изнутри) равен тройному интегралу от дивергенции этого поля по объему V, ограниченному данной поверхностью.
Используя формулу (71.8), можно дать другое определение дивергенции векторного поля 
По теореме о среднем для тройного интеграла (см. п. 54.1) имеем:
 
где 

 
Пусть поверхность S стягивается в точку. Тогда 

 
Дивергенцией векторного поля в точке М называется предел отношения потока поля через (замкнутую) поверхность S, окружающую точку М, к объему тела, ограниченного этой поверхностью, при условии, что вся поверхность стягивается в точку 
Определение (71.9) дивергенции эквивалентно (можно показать) определению (71.6).
Как видно из определения, дивергенция векторного поля в точке является скалярной величиной. Она образует скалярное поле в данном векторном поле.
Исходя из физического смысла потока (обычно условно считают, что 



Понятно, что если в объеме V, ограниченном замкнутой поверхностью S, нет ни источников, ни стоков, то 
Векторное поле, в каждой точке которого дивергенция поля равна нулю, т. е. 
Пример:
Найти дивергенцию поля линейных скоростей 

Решение:
Примем ось вращения жидкости за ось Oz. Тогда, как показано ранее (см. пример 69.2), 
 
Поле 
Циркуляция поля
Пусть векторное поле образовано вектором (71.1). Возьмем в этом поле некоторую замкнутую кривую L и выберем на ней определенное направление.
Пусть 


Криволинейный интеграл по замкнутому контуру L от скалярного произведения вектора 

 
Рассмотрим различные формы записи циркуляции. Так как
 
где 


 
 
Циркуляция С, записанная в виде (71.12) имеет простой физический смысл: если кривая L расположена в силовом поле, то циркуляция — это работа силы 
Отметим, что вдоль замкнутых векторных линий циркуляция отлична от нуля, потому что в каждой точке векторной линии скалярное произведение 

Пример:
Найти циркуляцию вектора поля линейных скоростей вращающегося тела (см. пример 69.2) 

Решение:
Будем считать, что направление нормали к плоскости 
 
где S — площадь поверхности, ограниченной кривой L (см. 56.17).
Заметим, что если нормаль к поверхности S образует угол 


Пример:
Вычислить циркуляцию векторного поля
 
вдоль периметра треугольника с вершинами A(1;0;0), В(0;1;0), С(0;0;1) (см. рис. 277).
 
Решение:
Согласно формуле (71.12), имеем:
 
На отрезке AB: x + у = 1, z = 0, следовательно,
 
На отрезке ВС: у + z = 1, х = 0, следовательно,
 
На отрезке СА: х + z = 1, у = 0, следовательно,
 
 
Ротор поля. Формула Стокса
Ротором (или вихрем) векторного поля
 
называется вектор, обозначаемый 
 
Формулу (71.13) можно записать с помощью символического определителя в виде, удобном для запоминания:
 
Отметим некоторые свойства ротора.
- Если — постоянный вектор, то 
- т. е. ротор суммы двух векторов равен сумме роторов слагаемых. 
- Если U — скалярная функция, а — векторная, то 
Эти свойства легко проверить, используя формулу (71.13). Покажем, например, справедливость свойства 3:
 
Используя понятия ротора и циркуляции, векторного поля, запишем известную в математическом анализе (см. п. 58.4) формулу Стокса:
 
Левая часть формулы (71.14) представляет собой циркуляцию вектора 


 
Следовательно, формулу Стокса можно записать в виде
 
Такое представление формулы Стокса называют ее векторной формой. В этой формуле положительное направление на контуре L и выбор стороны у поверхности S согласованы между собой так же, как в теореме Стокса.
Формула (71.15) показывает, что циркуляция вектора 

Используя формулу (71.14), можно дать другое определение ротора поля, эквивалентное первому и не зависящее от выбора координатной системы.
Для этого применим формулу Стокса (71.15) для достаточно малой плоской площадки S с контуром L, содержащей точку М.
По теореме о среднем для поверхностного интеграла (п. 57.1, свойство 7) имеем:
 
где 
 
Тогда формулу (71.15) можно записать в виде
 
 
Пусть контур L стягивается в точку М. Тогда 
 
Ротором вектора 
Как видно из определения, ротор вектора 
Дадим физическое истолкование понятия ротора векторного поля. Найдем ротор поля линейных скоростей твердого тела, вращающегося вокруг оси Oz с постоянной угловой скоростью (пример 69.2) 
По определению ротора
 
Ротор этого поля направлен параллельно оси вращения, его модуль равен удвоенной угловой скорости вращения.
С точностью до числового множителя ротор поля скоростей 
Замечание:
Из определения (71.13) ротора вытекает, что направление ротора — это направление, вокруг которого циркуляция имеет наибольшее значение (плотность) по сравнению с циркуляцией вокруг любого направления, не совпадающего с нормалью к площадке S.
Так что связь между ротором и циркуляцией аналогична связи между градиентом и производной по направлению (см. п. 70.3).
Оператор Гамильтона
Векторные дифференциальные операции первого порядка:
Основными дифференциальными операциями (действиями) над скалярным полем U и векторным полем 

Эти операции удобно записывать с помощью так называемого оператора Гамильтона
 
Этот символический вектор называют также оператором 




Применяя оператор Гамильтона, получим дифференциальные операции первого порядка:
 
Оператор Гамильтона применяется для записи и других операций и для вывода различных формул в теории поля. При действиях с ним надо пользоваться правилами векторной алгебры и правилами дифференцирования.
В частности, производная по направлению (70.2) может быть записана в виде
 
где 
Векторные дифференциальные операции второго порядка
После применения оператора Гамильтона к скалярному или векторному полю получается новое поле, к которому можно снова применить этот оператор. В результате получаются дифференциальные операции второго порядка. Нетрудно убедиться, что имеется лишь пять дифференциальных операций второго порядка:
 
(Понятно, что операция 


Запишем явные выражения для дифференциальных операций второго порядка, используя оператор Гамильтона. Заметим при этом, что оператор действует только на множитель, расположенный непосредственно за оператором.
 
Правая часть этого равенства называется оператором Лапласа скалярной функции U и обозначается 
 
Дифференциальное уравнение Лапласа 
Замечание. К равенству (72.1) можно прийти, введя в рассмотрение скалярный оператор дельта:
 
(который тоже называют оператором Лапласа).
2. 
 
4. 
 
так как двойное векторное произведение обладает свойством
 
Здесь 

Некоторые свойства основных классов векторных полей
Соленоидальное поле
Напомним, что векторное поле 
Примерами соленоидальных полей являются: поле линейных скоростей вращающегося твердого тела (см. пример 71.4); магнитное поле, создаваемое прямолинейным проводником, вдоль которого течет электрический ток, и другие.
Приведем некоторые свойства соленоидального поля.
- В соленоидальном поле поток вектора через любую замкнутую поверхность равен нулю. Это свойство непосредственно вытекает из формулы (71.8). Таким образом, соленоидальное поле не имеет источников и стоков. 
- Соленоидальное поле является полем ротора некоторого векторного поля, т. е. если , то существует такое поле , что . Вектор называется векторным потенциалом поля . 
Любое из свойств 1-2 можно было бы взять в качестве определения соленоидального поля.
Доказывать свойство 2 не будем. Отметим лишь, что обратное утверждение — поле ротора векторного поля есть соленоидальное — нами доказано (выше мы показали, что 
3. В соленоидальном поле 
Рассмотрим векторную трубку между двумя ее произвольными сечениями 

 
где n — внешняя нормаль.
 
Так как на боковой поверхности векторной трубки нормаль п перпендикулярна к векторам поля, то 
 
Переменив направление нормали на площадке 

 
В поле скоростей текущей жидкости полученный результат означает, что количество жидкости, втекающей в трубку за единицу времени, равно количеству жидкости, вытекающей из нее.
Потенциальное поле
Векторное поле 

Приведем основные свойства потенциального поля.
Свойство 1. Циркуляция потенциального поля 
Это непосредственно вытекает из формулы (71.14). Следовательно,
 
В частности, для силового потенциального поля это означает, что работа силы по любому замкнутому контуру равна нулю; в поле скоростей текущей жидкости равенство С = 0 означает, что в потоке нет замкнутых струек, т. е. нет водоворотов.
Свойство 2. В потенциальном поле 




Это свойство вытекает из свойства 1. Действительно, взяв в поле две точки 


 
Учитывая свойства криволинейного интеграла, получаем:
 
 
Свойство 3. Потенциальное поле является полем градиента некоторой скалярной функции U(x; y; z), т. е. если 
Из равенства 

 
Отсюда: 
 
т. е. вектор поля 
Замечание. Из равенства rot grad U = 0 следует обратное утверждение — поле градиента скалярной функции U = U(x;y; z) является потенциальным.
Из равенства 
 
где 
Произвольное же векторное поле требует задания трех скалярных функций (P(x;y;z), Q(x;y;z), R(x;y,z) — проекции вектора поля на оси координат).
Замечание. Определение потенциального поля может быть дано иначе — векторное поле 


Пример:
Установить потенциальность поля
 
и найти его потенциал.
Решение:
 
Следовательно, поле вектора 
Найдем потенциал U по формуле (73.1), выбирая в качестве фиксированной точки начало координат, т. е. 
 
 
Гармоническое поле
Векторное поле 
 
Примером гармонического поля является поле линейных скоростей стационарного безвихревого потока жидкости при отсутствии в нем источников и стоков.
Так как поле 

Но так как поле одновременно и соленоидальное, то
 
или, что то же самое,
 
т. е. потенциальная функция U гармонического поля а является решением дифференциального уравнения Лапласа. Такая функция называется, как уже упоминали, гармонической.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
 



















































Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
🌟 Видео
ДивергенцияСкачать

РоторСкачать

41. Основные понятия теории векторных полейСкачать

ДивергенцияСкачать

Дивергенция векторного поля. Гидродинамическая аналогия. Теорема Остроградского.Скачать

Найти дивергенцию и ротор векторного поляСкачать

Демидович №4427: дивергенция радиус-вектораСкачать

Дивергенция и ротор: Язык уравнений Максвелла, течения жидкости и большеСкачать

Демидович №4438: дивергенция векторного произведенияСкачать

Юшков Е. В. - Математический анализ III - Скалярные и векторные поляСкачать

Демидович №4439б: дивергенция ротораСкачать

Скалярное и векторное поля. Определения и отличия.Скачать

Демидович №4429: дивергенция произведения функций от радиус-вектораСкачать
































































































 где с = const.
где с = const. т. е. дивергенция суммы двух векторных функций равна сумме дивергенции слагаемых.
т. е. дивергенция суммы двух векторных функций равна сумме дивергенции слагаемых.


























 т. е. ротор суммы двух векторов равен сумме роторов слагаемых.
т. е. ротор суммы двух векторов равен сумме роторов слагаемых.






















 , что
, что  . Вектор
. Вектор 

















