Действия над векторами заданными своими координатами кратко

Операции над векторами и их свойства: сложение и умножение

Прежде чем приступить к тематике статьи, напомним основные понятия.

Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.

Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.

Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.

Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.

Видео:Действия над векторами, заданными координатамиСкачать

Действия над векторами, заданными координатами

Сложение двух векторов

Исходные данные: векторы a → и b → . Для выполнения над ними операции сложения необходимо из произвольной точки отложить вектор A B → , равный вектору а → ; из полученной точки undefined – вектор В С → , равный вектору b → . Соединив точки undefined и C , получаем отрезок (вектор) А С → , который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.

Геометрически сложение векторов выглядит так:

— для неколлинеарных векторов:

Действия над векторами заданными своими координатами кратко

— для коллинеарных (сонаправленных или противоположнонаправленных) векторов:

Действия над векторами заданными своими координатами кратко

Видео:Сложение, вычитание, умножение на число векторов через координату. 9 класс.Скачать

Сложение, вычитание, умножение на число векторов через координату. 9 класс.

Сложение нескольких векторов

Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.

Исходные данные: векторы a → , b → , c → , d → . Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a → ; затем от конца полученного вектора откладывается вектор, равный вектору b → ; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B , а полученный отрезок (вектор) A B → – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .

Геометрически оно выглядит следующим образом:

Действия над векторами заданными своими координатами кратко

Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a → и b → есть сумма векторов a → и — b → .

Видео:Действия над векторами, записанными в координатной форме. Геометрия 9Скачать

Действия над векторами, записанными в координатной форме. Геометрия 9

Умножение вектора на число

Чтобы произвести действие умножения вектора на некое число k , необходимо учитывать следующие правила:
— если k > 1 , то это число приведет к растяжению вектора в k раз;
— если 0 k 1 , то это число приведет к сжатию вектора в 1 k раз;
— если k 0 , то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
— если k = 1 , то вектор остается прежним;
— если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.

Исходные данные:
1) вектор a → и число k = 2 ;
2) вектор b → и число k = — 1 3 .

Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:

Действия над векторами заданными своими координатами кратко

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Свойства операций над векторами

Описанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.

Исходные данные: векторы a → , b → , c → и произвольные действительные числа λ и μ .

  1. Свойство коммутативности: a ⇀ + b → = b → + a → .
    Действия над векторами заданными своими координатами кратко
  2. Свойство ассоциативности: ( a → + b → ) + c → = a → + ( b → + c → ) .
    Действия над векторами заданными своими координатами кратко
  3. Свойство использования нейтрального элемента по сложению (нулевой вектор 0 → ⃗). Это очевидное свойство: a → + 0 → = a →
  4. Свойство использования нейтрального элемента по умножению (число, равное единице): 1 · a → = a → . Это очевидное свойство, не предполагающее никаких геометрических преобразований.
  5. Любой ненулевой вектор a → имеет противоположный вектор — a → и верным является равенство: a → + ( — a → ) = 0 → . Указанное свойство — очевидное.
  6. Сочетательное свойство операции умножения: ( λ · µ ) · a → = λ · ( µ · a → ) . Например, растяжение вектора при умножении на число 10 можно произвести, сначала растянув вектор в 2 раза, а затем полученный результат еще в 5 раз. Также возможен вариант умножения на число 10 при сжатии вектора в 5 раз и последующего растяжения полученного результата в 50 раз.
  7. Первое распределительное свойство (очевидно): ( λ + µ ) · a → = λ · a → + µ · a → .
  8. Второе распределительное свойство: λ · ( a → + b → ) = λ · a → + λ · b → .
    Геометрически это свойство определяется подобием треугольников:
    Действия над векторами заданными своими координатами кратко

Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.

Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.

Задача: упростить выражение a → — 2 · ( b → + 3 · a → )
Решение
— используя второе распределительное свойство, получим: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · ( 3 · a → )
— задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a → — 2 · b → — 2 · ( 3 · a → ) = a → — 2 · b → — ( 2 · 3 ) · a → = a → — 2 · b → — 6 · a →
— используя свойство коммутативности, меняем местами слагаемые: a → — 2 · b → — 6 · a → = a → — 6 · a → — 2 · b →
— затем по первому распределительному свойству получаем: a → — 6 · a → — 2 · b → = ( 1 — 6 ) · a → — 2 · b → = — 5 · a → — 2 · b → Краткая запись решения будет выглядеть так: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · 3 · a → = 5 · a → — 2 · b →
Ответ: a → — 2 · ( b → + 3 · a → ) = — 5 · a → — 2 · b →

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Действия над векторами заданными своими координатами кратко

Глава I. Векторы на плоскости и в пространстве

§ 11. Действия над векторами, заданными своими координатами

Если векторы заданы своими координатами в базисе e1, e2 , e3, то действия над ними выполняются по следующим правилам:

1. При сложении двух (или большего числа) векторов их соответственные координаты складываются:

Для суммы трех или большего числа векторов доказательство проводится аналогично.

2. При вычитании векторов их соответственные координаты вычитаются:

Доказательство проведите самостоятельно.

3. При умножении вектора на число все его координаты умножаются на это число.

Видео:Линейная алгебра. Векторы и операции над векторами.Скачать

Линейная алгебра. Векторы и операции над векторами.

Векторы на ЕГЭ по математике. Действия над векторами

Действия над векторами заданными своими координатами кратко

Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения Действия над векторами заданными своими координатами кратконаправлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Действия над векторами заданными своими координатами кратко

Вот другой пример.
Автомобиль движется из A в B . Конечный результат — его перемещение из точки A в точку B , то есть перемещение на вектор Действия над векторами заданными своими координатами кратко.

Действия над векторами заданными своими координатами кратко

Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: Действия над векторами заданными своими координатами краткоили Действия над векторами заданными своими координатами кратко

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами: Действия над векторами заданными своими координатами кратко

Здесь в скобках записаны координаты вектора Действия над векторами заданными своими координатами кратко— по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Действия над векторами заданными своими координатами кратко

Если координаты вектора заданы, его длина находится по формуле

Действия над векторами заданными своими координатами кратко

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами кратко, помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами кратко.

Действия над векторами заданными своими координатами кратко

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов — правило треугольника. Возьмем те же векторы Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами кратко. К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами кратко.

Действия над векторами заданными своими координатами кратко

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Действия над векторами заданными своими координатами кратко

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий — перемещение из А в F .

При сложении векторов Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами краткополучаем:

Действия над векторами заданными своими координатами кратко

Действия над векторами заданными своими координатами кратко

Видео:ДЕЙСТВИЯ НАД ВЕКТОРАМИ \\ 9 класс \\ геометрияСкачать

ДЕЙСТВИЯ НАД ВЕКТОРАМИ \\\\ 9 класс \\\\ геометрия

Вычитание векторов

Вектор Действия над векторами заданными своими координатами кратконаправлен противоположно вектору Действия над векторами заданными своими координатами кратко. Длины векторов Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами краткоравны.

Действия над векторами заданными своими координатами кратко

Теперь понятно, что такое вычитание векторов. Разность векторов Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами кратко— это сумма вектора Действия над векторами заданными своими координатами краткои вектора Действия над векторами заданными своими координатами кратко.

Действия над векторами заданными своими координатами кратко

Видео:Видеоурок "Действия над векторами"Скачать

Видеоурок "Действия над векторами"

Умножение вектора на число

При умножении вектора Действия над векторами заданными своими координатами краткона число k получается вектор, длина которого в k раз отличается от длины Действия над векторами заданными своими координатами кратко. Он сонаправлен с вектором Действия над векторами заданными своими координатами кратко, если k больше нуля, и направлен противоположно Действия над векторами заданными своими координатами кратко, если k меньше нуля.

Действия над векторами заданными своими координатами кратко

Видео:Физика. 9 класс. Векторы и действия над ними. Проекция вектора на координатные оси /04.09.2020/Скачать

Физика. 9 класс. Векторы и действия над ними. Проекция вектора на координатные оси /04.09.2020/

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Действия над векторами заданными своими координатами кратко

Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:

Действия над векторами заданными своими координатами кратко

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов Действия над векторами заданными своими координатами краткои Действия над векторами заданными своими координатами кратко:

Действия над векторами заданными своими координатами кратко

Из формулы для скалярного произведения можно найти угол между векторами:

Действия над векторами заданными своими координатами кратко

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

Действия над векторами заданными своими координатами краткоОнлайн-курс «Математика 10+11 100 баллов»

— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.

🎦 Видео

Все о векторе в координатной форме.All about the vector in coordinate form.Скачать

Все о векторе в координатной форме.All about the vector in coordinate form.

Урок 8. Векторные величины. Действия над векторами.Скачать

Урок 8. Векторные величины. Действия над векторами.

Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать

Векторы и действия над ними, проекция вектора на координатные оси.  9 класс.

10 класс, 40 урок, Сложение и вычитание векторовСкачать

10 класс, 40 урок, Сложение и вычитание векторов

18+ Математика без Ху!ни. Векторное произведение.Скачать

18+ Математика без Ху!ни. Векторное произведение.

ДЕЙСТВИЯ НАД ВЕКТОРАМИ В ПРОСТРАНСТВЕСкачать

ДЕЙСТВИЯ НАД ВЕКТОРАМИ В ПРОСТРАНСТВЕ

Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Действия над векторами в координатах. Векторная алгебраСкачать

Действия над векторами в координатах. Векторная алгебра
Поделиться или сохранить к себе: