Дайте определение параллельных прямых какие 2 отрезка

Параллельные прямые — определение и вычисление с примерами решения

Содержание:

Параллельные прямые:

Ранее мы уже дали определение параллельных прямых.

Напомним, что две прямые на плоскости называются параллельными, если они не пересекаются.

Например, если две прямые a и b плоскости перпендикулярны прямой c этой плоскости, то они не пересекаются, т. е. параллельны (рис. 85, а). Этот факт нами был доказан как следствие из теоремы о существовании и единственности перпендикуляра, проведенного из точки к данной прямой.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Отрезок называется параллельным прямой, если он лежит на прямой, параллельной данной прямой.

Например, на рисунке 85, B изображены параллельные отрезки АВ и СD (параллельность отрезков АВ и СD обозначается следующим образом: АВ Дайте определение параллельных прямых какие 2 отрезка). Отрезки ЕF и АВ не параллельны (это обозначается так: ЕF Дайте определение параллельных прямых какие 2 отрезка

Дайте определение параллельных прямых какие 2 отрезка

Аналогично определяется параллельность двух лучей, отрезка и прямой, луча и прямой, а также отрезка и луча. Например, на рисунке 85, в изображены отрезок PQ, параллельный прямой l, и отрезок ТК, параллельный лучу СD.

Видео:7 класс, 24 урок, Определение параллельных прямыхСкачать

7 класс, 24 урок, Определение параллельных прямых

Определения параллельных прямых

На рисунке 10 прямые Дайте определение параллельных прямых какие 2 отрезкаимеют общую точку М. Точка А принадлежит прямой Дайте определение параллельных прямых какие 2 отрезка, но не принадлежит прямой Дайте определение параллельных прямых какие 2 отрезка. Говорят, что прямые Дайте определение параллельных прямых какие 2 отрезкапересекаются в точке М.
Дайте определение параллельных прямых какие 2 отрезка

Это можно записать так: Дайте определение параллельных прямых какие 2 отрезка— знак принадлежности точки прямой, «Дайте определение параллельных прямых какие 2 отрезка» — знак пересечения геометрических фигур.

На плоскости две прямые могут либо пересекаться, либо не пересекаться. Прямые на плоскости, которые не пересекаются, называются параллельными. Если прямые Дайте определение параллельных прямых какие 2 отрезкапараллельны (рис. 11, с. 11), то пишут Дайте определение параллельных прямых какие 2 отрезка

Дайте определение параллельных прямых какие 2 отрезка

Две прямые, которые при пересечении образуют прямой угол, называются перпендикулярными прямыми. Если прямые Дайте определение параллельных прямых какие 2 отрезкаперпендикулярны (рис. 12), то пишут Дайте определение параллельных прямых какие 2 отрезка

ВАЖНО!

Совпадающие прямые будем считать одной прямой. Поэтому, если сказано «даны две прямые», это означает, что даны две различные несовпадающие прямые. Это касается также точек, лучей, отрезков и других фигур.

Есть два способа практического сравнения длин отрезков, а также величин углов: 1) наложение; 2) сравнение результатов измерения. Оба способа являются приближенными. В геометрии отрезки и углы могут быть равны, если это дано по условию либо следует из условия на основании логических рассуждений.

Признаки параллельности двух прямых

Прямая c называется секущей по отношению к прямым a и b, если она пересекает каждую из них в различных точках.

При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 86, а обозначены цифрами. Некоторые пары этих углов имеют специальное название:

  1. углы 3 и 5, 4 и 6 называются внутренними накрест лежащими;
  2. углы 4 и 5, 3 и 6 называются внутренними односторонними;
  3. углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются соответственными.

Дайте определение параллельных прямых какие 2 отрезка

Рассмотрим признаки параллельности двух прямых.

Теорема 1 (признак параллельности прямых по равенству внутренних накрест лежащих углов). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

  1. Пусть при пересечении прямых а и b секущей АВ внутренние накрест лежащие углы 1 и 2 равны (рис. 86, б). Докажем, что аДайте определение параллельных прямых какие 2 отрезкаb.
  2. Если Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2 = 90°, то а Дайте определение параллельных прямых какие 2 отрезкаАВ и b Дайте определение параллельных прямых какие 2 отрезкаАВ. Отсюда в силу теоремы 1 (глава 3, § 2) следует, что аДайте определение параллельных прямых какие 2 отрезкаb.
  3. Если Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2Дайте определение параллельных прямых какие 2 отрезка90°, то из середины О отрезка АВ проведем отрезок ОF Дайте определение параллельных прямых какие 2 отрезкаa.
  4. На прямой b отложим отрезок ВF1 = АF и проведем отрезок ОF1.
  5. Заметим, что Дайте определение параллельных прямых какие 2 отрезкаОFА = Дайте определение параллельных прямых какие 2 отрезкаОF1В по двум сторонам и углу между ними (АО = ВО, АF= BF1 и Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2). Из равенства этих треугольников следует, что Дайте определение параллельных прямых какие 2 отрезкаЗ = Дайте определение параллельных прямых какие 2 отрезка4 и Дайте определение параллельных прямых какие 2 отрезка5 = Дайте определение параллельных прямых какие 2 отрезка6.
  6. Так как Дайте определение параллельных прямых какие 2 отрезка3 = Дайте определение параллельных прямых какие 2 отрезка4, а точки А, В и О лежат на одной прямой, то точки F1, F и О также лежат на одной прямой.
  7. Из равенства Дайте определение параллельных прямых какие 2 отрезка5 = Дайте определение параллельных прямых какие 2 отрезка6 следует, что Дайте определение параллельных прямых какие 2 отрезка6 = 90°. Получаем, что а Дайте определение параллельных прямых какие 2 отрезкаFF1 и b Дайте определение параллельных прямых какие 2 отрезкаFF1, а аДайте определение параллельных прямых какие 2 отрезкаb.

Например, пусть прямая l проходит через точку F, принадлежащую стороне АС треугольника АВС, так, что Дайте определение параллельных прямых какие 2 отрезка1 равен углу ВАС. Тогда сторона АВ параллельна прямой l, так как по теореме 1 данного параграфа прямые АВ и l параллельны (рис. 86, в).

Теорема 2 (признак параллельности прямых по равенству соответственных углов). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

1) Пусть при пересечении прямых а и b секущей с соответственные углы равны, например Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2. Докажем, что прямые a и b параллельны (рис. 87, а).

Дайте определение параллельных прямых какие 2 отрезка
2) Заметим, что Дайте определение параллельных прямых какие 2 отрезка2 = Дайте определение параллельных прямых какие 2 отрезка3 как вертикальные углы.

3) Из равенств Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2 и Дайте определение параллельных прямых какие 2 отрезка2 = Дайте определение параллельных прямых какие 2 отрезка3 следует, что Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка3. А поскольку углы 1 и 3 являются внутренними накрест лежащими углами, образованными при пересечении прямых a и b секущей с, то в силу теоремы 1 получаем, что аДайте определение параллельных прямых какие 2 отрезкаb.

Например, пусть прямая l пересекает стороны AB и АС треугольника ABC в точках О и F соответственно и Дайте определение параллельных прямых какие 2 отрезкаAOF = Дайте определение параллельных прямых какие 2 отрезкаABC. Тогда сторона ВС параллельна прямой l, так как по теореме 2 прямые l и ВС параллельны (рис. 87, б).

Теорема 3 (признак параллельности прямых по сумме градусных мер внутренних односторонних углов). Если, при пересечении двух прямых секущей сумма градусных мер внутренних односторонних углов равна 180°, то прямые параллельны.

  1. Пусть при пересечении двух прямых а и b секущей с сумма градусных мер внутренних односторонних углов равна 180°, например Дайте определение параллельных прямых какие 2 отрезка1 + Дайте определение параллельных прямых какие 2 отрезка2 = 180° (рис. 87, в).
  2. Заметим, что Дайте определение параллельных прямых какие 2 отрезка3 + Дайте определение параллельных прямых какие 2 отрезка2 = 180°, так как углы 3 и 2 являются смежными.
  3. Из равенств Дайте определение параллельных прямых какие 2 отрезкаl + Дайте определение параллельных прямых какие 2 отрезка2 = 180° и Дайте определение параллельных прямых какие 2 отрезка3 + Дайте определение параллельных прямых какие 2 отрезка2 = 180° следует, что Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка3.
  4. Поскольку равны внутренние накрест лежащие углы 1 и 3, то прямые а и b параллельны.

Аксиома параллельных прямых

Как уже отмечалось, при доказательстве теорем опираются на уже доказанные теоремы и некоторые исходные утверждения, которые называются аксиомами. Познакомимся еще с одной аксиомой, имеющей важное значение для дальнейшего построения геометрии.

Пусть в плоскости дана прямая а и не лежащая на ней произвольная точка О. Можно доказать, что через точку О в этой плоскости проходит прямая, параллельная прямой а. Действительно, проведем через точку О прямую с, перпендикулярную прямой a, затем прямую b, перпендикулярную прямой с. Так как прямые а и b перпендикулярны прямой с, то они не пересекаются, т. е. параллельны (рис. 92). Следовательно, через точку O Дайте определение параллельных прямых какие 2 отрезкаa проходит прямая b, параллельная прямой а. Возникает вопрос: сколько можно провести через точку О прямых, параллельных прямой а? Ответ на него не является очевидным. Оказывается, что утверждение о единственности прямой, проходящей через данную точку и параллельной прямой, не может быть доказано на основании остальных аксиом Евклида и само является аксиомой.

Дайте определение параллельных прямых какие 2 отрезка

Большой вклад в решение этого вопроса внес русский математик Н. И. Лобачевский (1792—1856).

Таким образом, в качестве одной из аксиом принимается аксиома параллельных прямых, которая формулируется следующим образом.

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Непосредственно из аксиомы параллельны х прямых в качестве следствий получаем следующие теоремы.

Теорема 1. Если две прямые параллельны третьей прямой, то они параллельны.

Пусть прямые а и b параллельны прямой с. Докажем, что аДайте определение параллельных прямых какие 2 отрезкаb (рис. 93, а). Проведем доказательство этой теоремы методом от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т. е. допустим, что прямые а и b не параллельны, а, значит, пересекаются в некоторой точке О. Тогда через точку О проходят две прямые а и b, параллельные прямой с, что противоречит аксиоме параллельных прямых. Таким образом, наше предположение неверно, а, следовательно, прямые а и b параллельны.

Дайте определение параллельных прямых какие 2 отрезка

Например, пусть прямые а и b пересекают сторону треугольника FDС так, что Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезкаF и Дайте определение параллельных прямых какие 2 отрезка2 = Дайте определение параллельных прямых какие 2 отрезкаF (рис. 93, б). Тогда прямые а и b параллельны прямой FD, а, следовательно, аДайте определение параллельных прямых какие 2 отрезкаb.

Теорема 2. Пусть три прямые лежат в плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую.

Пусть прямые а и b параллельны, а прямая с пересекает прямую а в точке О (рис. 94, а). Докажем, что прямая с пересекает прямую b. Проведем доказательство методом от противного. Допустим, что прямая с не пересекает прямую b. Тогда через точку О проходят две прямые а и с, не пересекающие прямую b, т. е. параллельные ей (рис. 94, б). Но это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно и прямая с пересекает прямую b.

Дайте определение параллельных прямых какие 2 отрезка

Обратные теоремы

В формулировке любой теоремы можно выделить две ее части: условие и заключение. Условие теоремы — это то, что дано, а заключение — то, что требуется доказать. Например, рассмотрим признак параллельности прямых: если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны. В этой теореме условием является первая часть утверждения: при пересечении двух прямых секущей внутренние накрест лежащие углы равны (это дано), а заключением — вторая часть: прямые параллельны (это требуется доказать).

Теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением — условие данной теоремы.

Теперь докажем теоремы, обратные признакам параллельности прямых.

Теорема 3 (о равенстве внутренних накрест лежащих углов). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

1) Пусть параллельные прямые а и b пересечены секущей (рис. 95, а). Докажем, что внутренние накрест лежащие углы, например 1 и 2, равны.

Дайте определение параллельных прямых какие 2 отрезка

2) Доказательство теоремы проведем методом от противного. Допустим, что углы 1 и 2 не равны. Отложим угол QАВ, равный углу 2, так, чтобы угол QАВ и Дайте определение параллельных прямых какие 2 отрезка2 были внутренними накрест лежащими при пересечении прямых AQ и b секущей АВ.

3) По построению накрест лежащие углы QАВ и Дайте определение параллельных прямых какие 2 отрезка2 равны, поэтому по признаку параллельности прямых следует, что AQ Дайте определение параллельных прямых какие 2 отрезкаb. Таким образом, получаем, что через точку А проходят две прямые AQ и а, параллельные прямой b, а это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно, а, значит, Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2.

Например, пусть прямая l параллельна стороне ВС треугольника АВС (рис. 95, б). Тогда Дайте определение параллельных прямых какие 2 отрезка3 = Дайте определение параллельных прямых какие 2 отрезкаB как внутренние накрест лежащие углы, образованные при пересечении параллельных прямых l и ВС секущей АВ.

Теорема 4 (о равенстве соответственных углов). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

  1. Пусть параллельные прямые а и b пересечены секущей с. Докажем, что соответственные углы, например 1 и 2, равны (рис. 96, а).
  2. Так как прямые а и b параллельны, то по теореме 3 данного параграфа накрест лежащие углы 1 и 3 равны, т. е. Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка3. Кроме того, Дайте определение параллельных прямых какие 2 отрезка2 = Дайте определение параллельных прямых какие 2 отрезка3, так как они вертикальные.
  3. Из равенств Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка3 и Дайте определение параллельных прямых какие 2 отрезка2 = Дайте определение параллельных прямых какие 2 отрезка3 следует, что Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2.

Дайте определение параллельных прямых какие 2 отрезка

Например, пусть прямая l параллельна биссектрисе AF треугольника ABC (рис. 96, б), тогда Дайте определение параллельных прямых какие 2 отрезка4 = Дайте определение параллельных прямых какие 2 отрезкаBAF. Действительно, Дайте определение параллельных прямых какие 2 отрезка4 и Дайте определение параллельных прямых какие 2 отрезкаFAC равны как соответственные углы, a Дайте определение параллельных прямых какие 2 отрезкаFAC = Дайте определение параллельных прямых какие 2 отрезкаBAF, так как AF — биссектриса.

Теорема 5 (о свойстве внутренних односторонних углов). Если две параллельные прямые пересечены секущей, то сумма градусных мер внутренних односторонних углов равна 180°.

1) Пусть параллельные прямые а и b пересечены секущей с. Докажем, например, что Дайте определение параллельных прямых какие 2 отрезка1 + Дайте определение параллельных прямых какие 2 отрезка2 = 180° (рис. 97, а).

Дайте определение параллельных прямых какие 2 отрезка

2) Так как прямые а и b параллельны, то по теореме 4 справедливо равенство Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка3.

3) Углы 2 и 3 смежные, следовательно, Дайте определение параллельных прямых какие 2 отрезка2 + Дайте определение параллельных прямых какие 2 отрезка3= 180°.

4) Из равенств Дайте определение параллельных прямых какие 2 отрезка= Дайте определение параллельных прямых какие 2 отрезка3 и Дайте определение параллельных прямых какие 2 отрезка2 + Дайте определение параллельных прямых какие 2 отрезка3 = 180° следует, что Дайте определение параллельных прямых какие 2 отрезка1 + Дайте определение параллельных прямых какие 2 отрезка2 = 180°.

Например, пусть отрезок FT параллелен стороне АВ треугольника ABC (рис. 97, б). Тогда Дайте определение параллельных прямых какие 2 отрезкаBAF + Дайте определение параллельных прямых какие 2 отрезкаTFA = 180°.

Заметим, если доказана какая-либо теорема, то отсюда еще не следует, что обратная теорема верна. Например, известно, что вертикальные углы равны, но если углы равны, то отсюда не вытекает, что они являются вертикальными.

Пример №1

Докажите, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой прямой.

1) Пусть прямые а и b параллельны и сДайте определение параллельных прямых какие 2 отрезкаа (рис. 98).

2) Так как прямая с пересекает прямую а, то она пересекает и прямую b.

3) При пересечении параллельных прямых а и b секущей с образуются равные внутренние накрест лежащие углы 1 и 2.

Дайте определение параллельных прямых какие 2 отрезка

Так как Дайте определение параллельных прямых какие 2 отрезка1 = 90°, то и Дайте определение параллельных прямых какие 2 отрезка2 = Дайте определение параллельных прямых какие 2 отрезка1 = 90°, а, значит, сДайте определение параллельных прямых какие 2 отрезкаb.

Что и требовалось доказать.

Видео:24. Определение параллельных прямыхСкачать

24. Определение параллельных прямых

Параллельность прямых на плоскости

Параллельность прямых — одно из основных понятий геометрии. Параллельность часто встречается в жизни. Посмотрев вокруг, можно убедиться, что мы живем в мире параллельных линий. Это края парты, столбы вдоль дороги, полоски «зебры» на пешеходном переходе.

Две прямые, перпендикулярные третьей

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Лучи и отрезки называются параллельными, если они лежат на параллельных прямых. Если прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкапараллельны, то есть Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка Дайте определение параллельных прямых какие 2 отрезка(рис. 160), то параллельны отрезки АВ и МК, отрезок МК и прямая Дайте определение параллельных прямых какие 2 отрезка, лучи АВ и КМ.

Дайте определение параллельных прямых какие 2 отрезка

Вы уже знаете теорему о параллельных прямых на плоскости: «Две прямые, перпендикулярные третьей, параллельны между собой». Другими словами, если Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, то Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка Дайте определение параллельных прямых какие 2 отрезка(рис. 161).

Дайте определение параллельных прямых какие 2 отрезка

Данная теорема позволяет решить две важные практические задачи.

Первая задача заключается в проведении нескольких параллельных прямых.

Пусть дана прямая Дайте определение параллельных прямых какие 2 отрезка(рис. 162). При помощи чертежного треугольника строят прямую Дайте определение параллельных прямых какие 2 отрезка, перпендикулярную прямой Дайте определение параллельных прямых какие 2 отрезка. Затем сдвигают треугольник вдоль прямой Дайте определение параллельных прямых какие 2 отрезкаи строят другую перпендикулярную прямую Дайте определение параллельных прямых какие 2 отрезка, затем — третью прямую Дайте определение параллельных прямых какие 2 отрезкаи т. д. Поскольку прямые Дайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезкаперпендикулярны одной прямой Дайте определение параллельных прямых какие 2 отрезка, то из указанной теоремы следует, что Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка.

Дайте определение параллельных прямых какие 2 отрезка

Вторая задача — проведение прямой, параллельной данной и проходящей через точку, не лежащую на данной прямой.

Дайте определение параллельных прямых какие 2 отрезка

По рисунку 163 объясните процесс проведения прямой Дайте определение параллельных прямых какие 2 отрезка, параллельной прямой Дайте определение параллельных прямых какие 2 отрезкаи проходящей через точку К.

Из построения следует: так как Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, то Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка. Решение второй задачи доказывает теорему о существовании прямой, параллельной данной, которая гласит:

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной.

Накрест лежащие, соответственные и односторонние углы

При пересечении двух прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкатретьей прямой Дайте определение параллельных прямых какие 2 отрезка, которая называется секущей, образуется 8 углов (рис. 164).

Дайте определение параллельных прямых какие 2 отрезка

Некоторые пары этих углов имеют специальные названия:

  • Дайте определение параллельных прямых какие 2 отрезка3 иДайте определение параллельных прямых какие 2 отрезка5,Дайте определение параллельных прямых какие 2 отрезка4 иДайте определение параллельных прямых какие 2 отрезка6 — внутренние накрест лежащие углы;
  • Дайте определение параллельных прямых какие 2 отрезка2 иДайте определение параллельных прямых какие 2 отрезка8,Дайте определение параллельных прямых какие 2 отрезка1 иДайте определение параллельных прямых какие 2 отрезка7 — внешние накрест лежащие углы;
  • Дайте определение параллельных прямых какие 2 отрезка2 иДайте определение параллельных прямых какие 2 отрезка6,Дайте определение параллельных прямых какие 2 отрезка3 иДайте определение параллельных прямых какие 2 отрезка7,Дайте определение параллельных прямых какие 2 отрезка1 иДайте определение параллельных прямых какие 2 отрезка5,Дайте определение параллельных прямых какие 2 отрезка4 иДайте определение параллельных прямых какие 2 отрезка8 — соответственные углы;
  • Дайте определение параллельных прямых какие 2 отрезка3 иДайте определение параллельных прямых какие 2 отрезка6,Дайте определение параллельных прямых какие 2 отрезка4 иДайте определение параллельных прямых какие 2 отрезка5 — внутренние односторонние углы;
  • Дайте определение параллельных прямых какие 2 отрезка2 иДайте определение параллельных прямых какие 2 отрезка7,Дайте определение параллельных прямых какие 2 отрезка1 иДайте определение параллельных прямых какие 2 отрезка8 — внешние односторонние углы.

На рисунке 165 отмечены углы 1 и 2. Они являются внутренними накрест лежащими углами при прямых ВС и AD и секущей BD. В этом легко убедиться, продлив отрезки ВС, AD и BD.
Дайте определение параллельных прямых какие 2 отрезка

Признаки параллельности прямых

С указанными парами углов связаны следующие признаки параллельности прямых.

Теорема (первый признак параллельности прямых). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

Дано: Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка— данные прямые, АВ — секущая, Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2 (рис. 166).

Дайте определение параллельных прямых какие 2 отрезка

Доказать: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка.

Доказательство:

Из середины М отрезка АВ опустим перпендикуляр МК на прямую Дайте определение параллельных прямых какие 2 отрезкаи продлим его до пересечения с прямой Дайте определение параллельных прямых какие 2 отрезкав точке N. Треугольники ВКМ и ANM равны по стороне и двум прилежащим к ней углам (АМ = МВ, Дайте определение параллельных прямых какие 2 отрезка1 = Дайте определение параллельных прямых какие 2 отрезка2 по условию, Дайте определение параллельных прямых какие 2 отрезкаBMK =Дайте определение параллельных прямых какие 2 отрезкаAMN как вертикальные). Из равенства треугольников следует, что Дайте определение параллельных прямых какие 2 отрезкаANM =Дайте определение параллельных прямых какие 2 отрезкаBKM = 90°. Тогда прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаперпендикулярны прямой NK. А так как две прямые, перпендикулярные третьей, параллельны между собой, то Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка.

Теорема (второй признак параллельности прямых). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2 (рис. 167).

Дайте определение параллельных прямых какие 2 отрезка

Доказать: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка.

Доказательство:

Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаи секущей Дайте определение параллельных прямых какие 2 отрезка. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка. Теорема доказана.

Теорема (третий признак параллельности прямых). Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Дано: Дайте определение параллельных прямых какие 2 отрезкаl +Дайте определение параллельных прямых какие 2 отрезка2 = 180° (рис. 168).

Дайте определение параллельных прямых какие 2 отрезка

Доказать: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка.

Доказательство:

Углы 1 и 3 — смежные, поэтому их сумма равна 180°. А так как сумма углов 1 и 2 равна 180° по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаи секущей Дайте определение параллельных прямых какие 2 отрезка. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка. Теорема доказана.

Пример №2

Доказать, что если отрезки AD и ВС пересекаются и точкой пересечения делятся пополам, то прямые АВ и CD параллельны.

Доказательство:

Пусть О — точка пересечения отрезков AD и ВС (рис. 169).

Дайте определение параллельных прямых какие 2 отрезка

Треугольники АОВ и DOC равны по двум сторонам и углу между ними (Дайте определение параллельных прямых какие 2 отрезкаAOB = Дайте определение параллельных прямых какие 2 отрезкаDOC как вертикальные, ВО = ОС, АО = OD по условию). Из равенства треугольников следует, что Дайте определение параллельных прямых какие 2 отрезкаBAO=Дайте определение параллельных прямых какие 2 отрезкаCDO. Так как эти углы — накрест лежащие при прямых АВ и CD и секущей AD, то АВ || CD по признаку параллельности прямых.

Пример №3

На биссектрисе угла ВАС взята точка К, а на стороне АС — точка D, Дайте определение параллельных прямых какие 2 отрезкаBAK = 26°, Дайте определение параллельных прямых какие 2 отрезкаADK = 128°. Доказать, что отрезок KD параллелен лучу АВ.

Дайте определение параллельных прямых какие 2 отрезка

Доказательство:

Так как АК — биссектриса угла ВАС (рис. 170), то

Дайте определение параллельных прямых какие 2 отрезкаBAC = 2 •Дайте определение параллельных прямых какие 2 отрезкаBAK = 2 • 26° = 52°.

Углы ADK и ВАС — внутренние односторонние при прямых KD и ВА и секущей АС. А поскольку Дайте определение параллельных прямых какие 2 отрезкаADK +Дайте определение параллельных прямых какие 2 отрезкаBAC = 128° + 52° = 180°, то KD || АВ по признаку параллельности прямых.

Пример №4

Биссектриса ВС угла ABD отсекает на прямой а отрезок АС, равный отрезку АВ. Доказать, что прямые а и b параллельны (рис. 171).

Дайте определение параллельных прямых какие 2 отрезка

Доказательство:

Так как ВС — биссектриса угла ABD, то Дайте определение параллельных прямых какие 2 отрезка1=Дайте определение параллельных прямых какие 2 отрезка2. Так как Дайте определение параллельных прямых какие 2 отрезкаBAC равнобедренный (АВ=АС по условию), то Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка3 как углы при основании равнобедренного треугольника. Тогда Дайте определение параллельных прямых какие 2 отрезка2 =Дайте определение параллельных прямых какие 2 отрезка3. Но углы 2 и 3 являются накрест лежащими при прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаи секущей ВС. А если накрест лежащие углы равны, то прямые параллельны. Следовательно, Дайте определение параллельных прямых какие 2 отрезка||Дайте определение параллельных прямых какие 2 отрезка.

Реальная геометрия

Дайте определение параллельных прямых какие 2 отрезка

На рисунке 184 изображен электронный угломер — инструмент для нанесения параллельных линий на рейке или доске. Прибор состоит из двух частей, скрепленных винтом. Одна часть неподвижная, она прижимается к доске, а другая поворачивается на необходимый угол, градусная мера которого отражается на экране угломера. Зажав винт, закрепляют нужный угол. Сдвинув неподвижную часть угломера вдоль доски, наносят новую линию разметки. Так получают параллельные линии, по которым затем распиливают доску.

Аксиома параллельных прямых

Вы уже знаете, что на плоскости через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной (см. § 15). Из пятого постулата Евклида (постулат — аксиоматическое предположение) следует, что такая прямая — единственная.

На протяжении двух тысячелетий вокруг утверждения о единственности параллельной прямой разыгрывалась захватывающая и драматичная история! Со времен Древней Греции математики спорили о том, можно доказать пятый постулат Евклида или нет. То есть это теорема или аксиома?

В конце концов работы русского математика Н. И. Лобачевского (1792—1856) позволили выяснить, что доказать пятый постулат нельзя. Поэтому это утверждение является аксиомой.

Дайте определение параллельных прямых какие 2 отрезка

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Если прямая Дайте определение параллельных прямых какие 2 отрезкапроходит через точку М и параллельна прямой Дайте определение параллельных прямых какие 2 отрезка(рис. 186), то любая другая прямая, проходящая через точку М, будет пересекаться с прямой Дайте определение параллельных прямых какие 2 отрезкав некоторой точке, пусть и достаточно удаленной.

Дайте определение параллельных прямых какие 2 отрезка

Поиски доказательства пятого постулата Евклида привели к развитию математики и физики, к пересмотру научных представлений о геометрии Вселенной. Решая проблему пятого постулата, Лобачевский создал новую геометрию, с новыми аксиомами, теоремами, отличающуюся от геометрии Евклида, которая теперь так и называется — геометрия Лобачевского.

Вы уже знаете, что на плоскости две прямые, перпендикулярные третьей, параллельны между собой. А если две прямые параллельны третьей прямой, то что можно сказать про первые две прямые? На этот вопрос отвечает следующая теорема.

Теорема (о двух прямых, параллельных третьей). На плоскости две прямые, параллельные третьей, параллельны между собой.

Дано: Дайте определение параллельных прямых какие 2 отрезка||Дайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка(рис. 187).

Дайте определение параллельных прямых какие 2 отрезка

Доказать: Дайте определение параллельных прямых какие 2 отрезка||Дайте определение параллельных прямых какие 2 отрезка.

Доказательство:

Предположим, что прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкане параллельны. Тогда они пересекаются в некоторой точке М. Поэтому через точку М будут проходить две прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка, параллельные третьей прямой Дайте определение параллельных прямых какие 2 отрезка. А это противоречит аксиоме параллельных прямых. Значит, наше предположение неверно и Дайте определение параллельных прямых какие 2 отрезка||Дайте определение параллельных прямых какие 2 отрезка. Теорема доказана.

Метод доказательства «от противного»

При доказательстве теоремы о двух прямых, параллельных третьей, мы применили метод доказательства от противного (то есть «от противоположного»). Суть его в следующем. Утверждение любой теоремы делится на условие — то, что в теореме дано, и заключение — то, что нужно доказать.

В доказанной выше теореме условие: «Каждая из двух прямых параллельна третьей прямой», а заключение: «Эти две прямые параллельны между собой».

Используя метод от противного, предполагают, что из данного условия теоремы следует утверждение, противоположное (противное) заключению теоремы. Если при сделанном предположении путем логических рассуждений приходят к какому-либо утверждению, противоречащему аксиомам или ранее доказанным теоремам, то сделанное предположение считается неверным, а верным — ему противоположное.

В доказательстве нашей теоремы мы предположили, что эти две прямые не параллельны, а пересекаются в точке. И пришли к выводу, что тогда нарушается аксиома параллельных прямых. Следовательно, наше предположение о пересечении прямых не верно, а верно ему противоположное: прямые не пересекаются, то есть параллельны.

Методом от противного ранее была доказана теорема о двух прямых, перпендикулярных третьей.

Данный метод является очень мощным логическим инструментом доказательства. Причем не только в геометрии, но и в любом аргументированном споре.

Теорема. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую прямую.

Пример №5

На рисунке 188 Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2,Дайте определение параллельных прямых какие 2 отрезка3 =Дайте определение параллельных прямых какие 2 отрезка4. Доказать, что Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка.

Дайте определение параллельных прямых какие 2 отрезка

Доказательство:

Так как накрест лежащие углы 1 и 2 равны, то Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезкапо признаку параллельности прямых. Так как соответственные углы 3 и 4 равны, то по признаку параллельности прямых Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка. Так как Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка, то Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезкапо теореме о двух прямых, параллельных третьей.

Пример №6

Доказать, что если сумма внутренних односторонних углов при двух данных прямых и секущей меньше 180°, то эти прямые пересекаются.

Доказательство:

Пусть Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка— данные прямые, АВ — их секущая, сумма углов 1 и 2 меньше 180° (рис. 189).

Дайте определение параллельных прямых какие 2 отрезка

Отложим от луча АВ угол 3, который в сумме с углом 1 дает 180°. Получим прямую Дайте определение параллельных прямых какие 2 отрезка, которая параллельна прямой Дайте определение параллельных прямых какие 2 отрезкапо признаку параллельности прямых. Если предположить, что прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкане пересекаются, а, значит, параллельны, то через точку А будут проходить две прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка, которые параллельны прямой Дайте определение параллельных прямых какие 2 отрезка. Это противоречит аксиоме параллельных прямых. Следовательно, прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкапересекаются.

Свойства параллельных прямых

Вы знаете, что если две прямые пересечены секущей и накрест лежащие углы равны, то прямые параллельны. Это признак параллельности прямых. Обратное утверждение звучит так: «Если две прямые параллельны и пересечены секущей, то накрест лежащие углы равны». Это утверждение верно, и оно выражает свойство параллельных прямых. Докажем его и два других свойства для соответственных и односторонних углов.

Теорема (о свойстве накрест лежащих углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

Дано: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка, АВ — секущая,Дайте определение параллельных прямых какие 2 отрезка1 иДайте определение параллельных прямых какие 2 отрезка2 — внутренние накрест лежащие (рис. 195).

Дайте определение параллельных прямых какие 2 отрезка

Доказать: Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2.

Доказательство:

Предположим, чтоДайте определение параллельных прямых какие 2 отрезка1 Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка2. Отложим от луча ВА угол 3, равный углу 2. Так как внутренние накрест лежащие углы 2 и 3 равны, то Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезкапо признаку параллельности прямых. Получили, что через точку В проходят две прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка, параллельные прямой Дайте определение параллельных прямых какие 2 отрезка. А это невозможно по аксиоме параллельных прямых. Следовательно, наше предположение неверно иДайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2. Теорема доказана.

Теорема (о свойстве соответственных углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Дано: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезка— секущая,Дайте определение параллельных прямых какие 2 отрезка1 иДайте определение параллельных прямых какие 2 отрезка2 — соответственные (рис. 196).

Дайте определение параллельных прямых какие 2 отрезка

Доказать:Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2.

Доказательство:

Углы 1 и 3 равны как накрест лежащие при параллельных прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка. Углы 2 и 3 равны как вертикальные. Следовательно,Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2. Теорема доказана.

Теорема (о свойстве односторонних углов при параллельных прямых и секущей).

Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.

Дано: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка, Дайте определение параллельных прямых какие 2 отрезка— секущая,Дайте определение параллельных прямых какие 2 отрезка1 иДайте определение параллельных прямых какие 2 отрезка2 — внутренние односторонние (рис. 197).

Дайте определение параллельных прямых какие 2 отрезка

Доказать:Дайте определение параллельных прямых какие 2 отрезкаl +Дайте определение параллельных прямых какие 2 отрезка2 = 180°.

Доказательство:

Углы 2 и 3 — смежные. По свойству смежных углов Дайте определение параллельных прямых какие 2 отрезка2 +Дайте определение параллельных прямых какие 2 отрезка3 = 180°. По свойству параллельных прямыхДайте определение параллельных прямых какие 2 отрезкаl =Дайте определение параллельных прямых какие 2 отрезка3 как накрест лежащие. Следовательно,Дайте определение параллельных прямых какие 2 отрезкаl +Дайте определение параллельных прямых какие 2 отрезка2 = 180°. Теорема доказана.

Следствие.

Прямая, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой прямой.

На рисунке 198 Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, т. е.Дайте определение параллельных прямых какие 2 отрезка1 = 90°. Согласно следствию Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, т. е.Дайте определение параллельных прямых какие 2 отрезка2 = 90°.

Дайте определение параллельных прямых какие 2 отрезка

Доказанные нами теоремы о свойствах углов при двух параллельных прямых и секущей являются обратными признакам параллельности прямых.

Чтобы не путать признаки и свойства параллельных прямых, нужно помнить следующее:

  • а) если ссылаются на признак параллельности прямых, то требуется доказать параллельность некоторых прямых;
  • б) если ссылаются на свойство параллельных прямых, то параллельные прямые даны, и нужно воспользоваться каким-то их свойством.

Пример №7

Доказать, что если отрезки АВ и CD равны и параллельны, а отрезки AD и ВС пересекаются в точке О, то треугольники АОВ и DOC равны.

Доказательство:

Углы BAD и CD А равны как накрест лежащие при параллельных прямых АВ и CD и секущей AD (рис. 199).

Дайте определение параллельных прямых какие 2 отрезка

Углы ABC и DCB равны как накрест лежащие при параллельных прямых АВ и CD и секущей ВС. Тогда Дайте определение параллельных прямых какие 2 отрезкаАОВ =Дайте определение параллельных прямых какие 2 отрезкаDOC по стороне и двум прилежащим к ней углам. Что и требовалось доказать.

Пример №8

Доказать, что отрезки параллельных прямых, заключенные между двумя другими пересекающими их параллельными прямыми, равны между собой.

Доказательство:

Пусть АВ || CD, ВС || AD (рис. 200).

Дайте определение параллельных прямых какие 2 отрезка

Докажем, что АВ = CD, ВС=AD. Проведем отрезок BD. У треугольников ABD и CDB сторона BD — общая,Дайте определение параллельных прямых какие 2 отрезкаABD =Дайте определение параллельных прямых какие 2 отрезкаCDB как накрест лежащие при параллельных прямых АВ и CD и секущей BD,Дайте определение параллельных прямых какие 2 отрезкаADB =Дайте определение параллельных прямых какие 2 отрезкаCBD как накрест лежащие при параллельных прямых ВС и AD и секущей BD. Тогда треугольники равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует, что AB=CD, BC=AD. Что и требовалось доказать.

Геометрия 3D

Две плоскости называются параллельными, если они не имеют общих точек (не пересекаются).

Если плоскости Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкапараллельны, то пишут: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка(рис. 211).

Дайте определение параллельных прямых какие 2 отрезка

Существует еще один вид многогранников — призмы (рис. 212). У призмы две грани (основания) — равные многоугольники, которые лежат в параллельных плоскостях, а остальные грани (боковые) — параллелограммы (задача 137).

Дайте определение параллельных прямых какие 2 отрезка

У прямой призмы боковые грани — прямоугольники, боковые ребра перпендикулярны плоскостям оснований и равны между собой. На рисунке 212 изображены треугольная и четырехугольная прямые призмы. У них параллельны плоскости верхней и нижней граней.

Углы с соответственно параллельными и соответственно перпендикулярными сторонами

Теорема (об углах с соответственно параллельными сторонами).

Углы с соответственно параллельными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

1) Острые углы 1 и 2 (рис. 213, а) — это углы с соответственно параллельными сторонами. Используя рисунок, докажите самостоятельно, что углы 1 и 2 равны.

Дайте определение параллельных прямых какие 2 отрезка

2) Острый угол 1 и тупой угол 2 (рис. 213, б) — это углы с соответственно параллельными сторонами. Используя этот рисунок и результат пункта 1), докажите, что сумма углов 1 и 2 равна 180°.

Теорема (об углах с соответственно перпендикулярными сторонами).

Углы с соответственно перпендикулярными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

Доказательство:

1) Острые углы 1 и 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, а). Построим острый угол 3 в вершине угла 1, стороны которого параллельны сторонам угла 2. Стороны угла 3 перпендикулярны сторонам угла 1 (прямая, перпендикулярная одной из параллельных прямых, перпендикулярна и другой прямой). По предыдущей теоремеДайте определение параллельных прямых какие 2 отрезка2 =Дайте определение параллельных прямых какие 2 отрезка3. Поскольку угол 1 и угол 3 дополняют угол 4 до 90°, тоДайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка3. Значит,Дайте определение параллельных прямых какие 2 отрезка1 =Дайте определение параллельных прямых какие 2 отрезка2.

Дайте определение параллельных прямых какие 2 отрезка

2) Острый угол 1 и тупой угол 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, б). Используя этот рисунок и результат пункта 1), докажите самостоятельно, что сумма углов 1 и 2 равна 180°.

Запомнить:

  1. Признаки параллельности прямых: «Если при пересечении двух прямых секущей накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые параллельны».
  2. Свойства параллельных прямых: «Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°».
  3. На плоскости две прямые, перпендикулярные третьей, параллельны между собой.
  4. На плоскости две прямые, параллельные третьей, параллельны между собой.
  5. Прямая, перпендикулярная одной из двух параллельных прямых, будет перпендикулярна и другой прямой.
  6. Углы с соответственно параллельными сторонами или равны, или в сумме составляют 180°.
  7. Углы с соответственно перпендикулярными сторонами или равны, или в сумме составляют 180°.

Расстояние между параллельными прямыми

Определение. Расстоянием между параллельными прямыми называется расстояние от точки одной из этих прямых до другой прямой.

Если Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезкаи АВДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, то расстояние между прямыми Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаравно длине перпендикуляра АВ (рис. 284). Это расстояние будет наименьшим из всех расстояний от точки А до точек прямой Дайте определение параллельных прямых какие 2 отрезка. Следующая теорема гарантирует, что расстояния от всех точек одной из параллельных прямых до другой прямой равны между собой.

Дайте определение параллельных прямых какие 2 отрезка

Теорема (о расстоянии между параллельными прямыми).

Все точки каждой из двух параллельных прямых равноудалены от другой прямой.

Дано: Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка, А Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, С Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, АВДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка, CDДайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка.

Доказать: АВ = CD (рис. 285).

Дайте определение параллельных прямых какие 2 отрезка

Доказательство:

Проведем отрезок AD. Углы CAD и BDA равны как внутренние накрест лежащие при параллельных прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаи секущей AD. Прямоугольные треугольники ABD и ACD равны по гипотенузе (AD — общая) и острому углу (Дайте определение параллельных прямых какие 2 отрезкаCAD =Дайте определение параллельных прямых какие 2 отрезкаBDA). Откуда АВ = CD. Теорема доказана.

Следствие.

Все точки, лежащие в одной полуплоскости относительно данной прямой и равноудаленные от этой прямой, лежат на прямой, параллельной данной.

Доказательство:

Пусть перпендикуляры АВ и CD к прямой Дайте определение параллельных прямых какие 2 отрезкаравны (см. рис. 285). Прямая Дайте определение параллельных прямых какие 2 отрезка, проходящая через точку А параллельно прямой Дайте определение параллельных прямых какие 2 отрезка, будет пересекать луч DC в некоторой точке С1. По теореме о расстоянии между параллельными прямыми C1D = АВ. Но CD = AB по условию. Значит, точка С совпадает с точкой С1 и лежит на прямой Дайте определение параллельных прямых какие 2 отрезка, которая параллельна прямой Дайте определение параллельных прямых какие 2 отрезка. Утверждение доказано.

В силу того что прямая, перпендикулярная к одной из двух параллельных прямых, будет перпендикулярна и к другой прямой, перпендикуляр АВ к прямой Дайте определение параллельных прямых какие 2 отрезкабудет перпендикуляром и к прямой Дайте определение параллельных прямых какие 2 отрезка(см. рис. 285). Поэтому такой перпендикуляр называют общим перпендикуляром двух параллельных прямых.

Пример №9

В четырехугольнике ABCD АВ || CD, AD || ВС, АВ = 32 см, Дайте определение параллельных прямых какие 2 отрезкаADC=150°. Найти расстояние между прямыми AD и ВС.

Решение:

Дайте определение параллельных прямых какие 2 отрезкаBAD +Дайте определение параллельных прямых какие 2 отрезкаADC = 180° как сумма внутренних односторонних углов при параллельных прямых АВ и CD и секущей AD (рис. 286).

Дайте определение параллельных прямых какие 2 отрезка

Тогда Дайте определение параллельных прямых какие 2 отрезкаBAD = 180°- 150° = 30°.

Расстояние между параллельными прямыми измеряется длиной перпендикуляра, опущенного из любой точки одной из прямых на другую прямую. Опустим перпендикуляр ВН на прямую AD. В прямоугольном треугольнике АВН катет ВН лежит против угла в 30°. Поэтому он равен половине гипотенузы. Значит, ВН =Дайте определение параллельных прямых какие 2 отрезкаАВ = 16 см.

Пример №10

Найти геометрическое место точек, равноудаленных от двух данных параллельных прямых.

Решение:

1) Пусть Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка— данные параллельные прямые (рис. 287), АВ — их общий перпендикуляр. Через середину К отрезка АВ проведем прямую Дайте определение параллельных прямых какие 2 отрезка, параллельную прямой Дайте определение параллельных прямых какие 2 отрезка.

Дайте определение параллельных прямых какие 2 отрезка

Тогда Дайте определение параллельных прямых какие 2 отрезка|| Дайте определение параллельных прямых какие 2 отрезка. По теореме о расстоянии между параллельными прямыми все точки прямой Дайте определение параллельных прямых какие 2 отрезкаравноудалены от прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкана расстояние Дайте определение параллельных прямых какие 2 отрезкаАВ.

2) Пусть некоторая точка М (см. рис. 287) равноудалена от прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка, то есть расстояние от точки М до прямой Дайте определение параллельных прямых какие 2 отрезкаравно Дайте определение параллельных прямых какие 2 отрезкаАВ. По следствию из теоремы о расстоянии между параллельными прямыми точки К и М лежат на прямой КМ, параллельной прямой Дайте определение параллельных прямых какие 2 отрезка. Но через точку К проходит единственная прямая Дайте определение параллельных прямых какие 2 отрезка, параллельная Дайте определение параллельных прямых какие 2 отрезка. Значит, точка М принадлежит прямой Дайте определение параллельных прямых какие 2 отрезка.

Таким образом, все точки прямой Дайте определение параллельных прямых какие 2 отрезкаравноудалены от прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка. И любая равноудаленная от них точка лежит на прямой Дайте определение параллельных прямых какие 2 отрезка. Прямая Дайте определение параллельных прямых какие 2 отрезка, проходящая через середину общего перпендикуляра прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка, — искомое геометрическое место точек.

Геометрия 3D

Расстоянием между параллельными плоскостями называется длина перпендикуляра, опущенного из точки, принадлежащей одной из плоскостей, на другую плоскость (рис. 290). В вашем классе пол и потолок — части параллельных плоскостей. Расстояние между ними равно высоте классной комнаты.

Дайте определение параллельных прямых какие 2 отрезка

Высотой прямой призмы называется расстояние между плоскостями оснований. Отрезок КК1 — перпендикуляр к плоскости ABC, равный ее высоте. У прямой призмы боковые ребра перпендикулярны плоскостям оснований. Поэтому высота призмы равна длине бокового ребра, то есть АА1 = КК1 (рис. 291).

Дайте определение параллельных прямых какие 2 отрезкаДайте определение параллельных прямых какие 2 отрезка

Запомнить:

  1. Сумма углов треугольника равна 180°.
  2. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
  3. Катет меньше гипотенузы. Перпендикуляр меньше наклонной, проведенной из той же точки к одной прямой.
  4. Прямоугольные треугольники могут быть равны: 1) по двум катетам; 2) по катету и прилежащему острому углу; 3) по катету и противолежащему острому углу; 4) по гипотенузе и острому углу; 5) по катету и гипотенузе.
  5. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы. Если катет равен половине гипотенузы, то он лежит против угла в 30°.
  6. В треугольнике против большей стороны лежит больший угол, а против большего угла — большая сторона.
  7. В треугольнике любая сторона меньше суммы двух других его сторон (неравенство треугольника).
  8. Любая точка биссектрисы равноудалена от сторон угла. Если точка внутри угла равноудалена от сторон угла, то она лежит на биссектрисе этого угла.
  9. Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы. Если в треугольнике медиана равна половине стороны, к которой она проведена, то треугольник прямоугольный.
  10. Биссектрисы треугольника пересекаются в одной точке (2-я замечательная точка).
  11. Расстояние от любой точки одной из параллельных прямых до другой прямой есть величина постоянная.

Справочный материал по параллельным прямым

Параллельные прямые

  • ✓ Две прямые называют параллельными, если они не пересекаются.
  • ✓ Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
  • ✓ Две прямые, перпендикулярные третьей прямой, параллельны.
  • ✓ Если две прямые параллельны третьей прямой, то они параллельны.
  • ✓ Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Признаки параллельности двух прямых

  • ✓ Если две прямые а и b пересечь третьей прямой с, то образуется восемь углов (рис. 246). Прямую с называют секущей прямых а и b.
  • Углы 3 и 6, 4 и 5 называют односторонними.
  • Углы 3 и 5, 4 и 6 называют накрест лежащими.
  • Углы 6 и 2, 5 и 1, 3 и 7, 4и 8 называют соответственными.

Дайте определение параллельных прямых какие 2 отрезка

  • ✓ Если накрест лежащие углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.
  • ✓ Если сумма односторонних углов, образующихся при пересечении двух прямых секущей, равна 180°, то прямые параллельны.
  • ✓ Если соответственные углы, образующиеся при пересечении двух прямых секущей, равны, то прямые параллельны.

Свойства параллельных прямых

  • ✓ Если две параллельные прямые пересекаются секущей, то:
  • • углы, образующие пару накрест лежащих углов, равны;
  • • углы, образующие пару соответственных углов, равны;
  • • сумма углов, образующих пару односторонних углов, равна 180°.
  • ✓ Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.

Перпендикулярные и параллельные прямые

Две прямые называют взаимно перпендикулярными, если они пересекаются под прямым углом.

На рисунке 264 прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка— перпендикулярные. Две прямые на плоскости называют параллельными, если они не пересекаются.

На рисунке 265 прямые Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезка— параллельны.

Дайте определение параллельных прямых какие 2 отрезка

Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Углы, образованные при пересечении двух прямых секущей. Признаки и свойство параллельности прямых. Свойства углов, образованных при пересечении двух параллельных прямых секущей

Прямую с называют секущей для прямых Дайте определение параллельных прямых какие 2 отрезкаи Дайте определение параллельных прямых какие 2 отрезкаесли она пересекает их в двух точках (рис. 266).

Дайте определение параллельных прямых какие 2 отрезка

Пары углов 4 и 5; 3 и 6 называют внутренними односторонними; пары углов 4 и 6; 3 и 5внутренними накрест лежащими; пары углов 1 и 5; 2 и 6; 3 и 7; 4 и 8соответственными углами.

Признаки параллельности прямых:

  1. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
  2. Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.
  3. Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.
  4. Две прямые, перпендикулярные третьей, параллельны.

Свойство параллельных прямых. Две прямые, параллельные третьей прямой, параллельны друг другу.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Соотношения между сторонами и углами треугольника
  • Неравенство треугольника — определение и вычисление
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми
  • Медианы, высоты и биссектрисы треугольника
  • Равнобедренный треугольник и его свойства
  • Серединный перпендикуляр к отрезку
  • Второй и третий признаки равенства треугольников

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Параллельность прямых

Дайте определение параллельных прямых какие 2 отрезка

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

    два внутренних односторонних угла образуют в сумме 180°:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

Дайте определение параллельных прямых какие 2 отрезка
два внутренних накрест лежащих угла равны между собой:

Дайте определение параллельных прямых какие 2 отрезка
два соответственных угла равны между собой:

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

Дайте определение параллельных прямых какие 2 отрезка

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

Дайте определение параллельных прямых какие 2 отрезка

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

Дайте определение параллельных прямых какие 2 отрезка

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Геометрия. 7 класс

Конспект урока

Перечень рассматриваемых вопросов:

  • Формулировка определения параллельных прямых.
  • Изображение параллельных прямых различными методами.
  • Как распознать на чертежах параллельные прямые?
  • Нахождение на рисунке пары накрест лежащих односторонних углов.

Параллельные прямые – две прямые на плоскости называются параллельными, если они не пересекаются.

Параллельные отрезки – два отрезка называются параллельными, если они лежат на параллельных прямых.

Параллельные лучи – два луча называются параллельными, если они лежат на параллельных прямых.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже знаете, что на плоскости бывают пересекающиеся и непересекающиеся прямые, вы знаете, как их строить на чертеже. Теперь давайте рассмотрим прямые, которые называются параллельными, и научимся их строить различными способами.

Для начала дадим определение параллельным прямым.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Дайте определение параллельных прямых какие 2 отрезка

Параллельные прямые имеют своё обозначение: a ║ b.

Рассмотрим прямые а и b, перпендикулярные прямой c. Ранее мы выяснили, что такие прямые не пересекаются, следовательно, прямые а и b параллельны.

Дайте определение параллельных прямых какие 2 отрезка

Очень часто рассматриваются не только параллельные прямые, но и параллельные отрезки.

Дадим им определение.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Дайте определение параллельных прямых какие 2 отрезка

Два луча называются параллельными, если они лежат на параллельных прямых.

Дайте определение параллельных прямых какие 2 отрезка

Рассмотрим прямую с, пересекающую прямые а и b.

Прямая c называется секущей по отношению к прямым a и b, если она пересекает каждую из них.

Дайте определение параллельных прямых какие 2 отрезка

Как видно из рисунка, при пересечении прямых а и b секущей c образуются 8 углов. Пронумеруем полученные углы.

Оказывается, некоторые пары образованных углов имеют свои названия.

Так, например, углы 3 и 5, 4 и 6 ‑ называются накрест лежащие углы.

Углы 4 и 5 или 3 и 6 ‑ называются односторонними углами.

А пары углов 1 и 5, 4 и 8, 2 и 6 или 3 и 7 ‑ называются соответственными углами.

Как же можно построить параллельные прямые?

Для построения параллельных прямых существует несколько способов построения с помощью различных чертёжных инструментов. Рассмотрим построение параллельных прямых с помощью чертёжного угольника и линейки.

Построим прямую b, проходящую через точку M и параллельную данной прямой а.

Приложим чертёжный угольник к прямой а, к нему приложим линейку. Теперь передвинем угольник вдоль линейки так, чтобы точка M оказалась на стороне угольника, остается провести прямую b. Прямые а и b будут параллельны, на основе признаков параллельности двух прямых, которые будут изучены позднее.

Дайте определение параллельных прямых какие 2 отрезка

Материал для углублённого изучения темы

Другие способы построения параллельных прямых.

Рассмотрим ещё два способа построения параллельных прямых с помощью чертёжных инструментов.

В чертёжной практике очень часто используется способ построения параллельных прямых с помощью рейсшины.

Дайте определение параллельных прямых какие 2 отрезка

При выполнении столярных работ, для разметки параллельных прямых используется ещё один инструмент – малка, который представляет собой две планки, скреплённые шарниром.

Дайте определение параллельных прямых какие 2 отрезка

При нанесении параллельных рисок можно использовать рейсмус, который представляет собой деревянную заготовку с двумя регулируемыми брусками, на концах который прикреплены для нанесения рисок иглы или гвозди.

Дайте определение параллельных прямых какие 2 отрезка

Разбор заданий тренировочного модуля

№ 1. Один из односторонних углов при двух параллельных прямых и секущей на 40º меньше другого. Найдите меньший угол, если известно, что сумма односторонних углов равна 180°.

Пусть х – меньший из односторонних углов, тогда больший равен х + 40. Т. к. сумма односторонних углов по условию равна 180°, составим уравнение.

х = 70° – градусная мера меньшего угла.

№ 2. Через параллельные прямые а и m проведены секущие АК и КР так, как показано на рисунке. КО = ВК = АК, при этом АК = КР = 9 см, отрезок ВО =АР, АР = 6 см. На сколько сантиметров периметр ∆ВОК меньше периметра ∆АКР?

Дайте определение параллельных прямых какие 2 отрезка

Решение: найдём периметр ∆АКР.

Р∆АКР = АК + КР + АР = 9 + 9 + 6 = 24 см

Найдём периметр ∆КВО. Для этого вычислим длины сторон треугольника КВО, исходя из условия задачи.

КО = ВК =АК = 9 = 6 см.

Р∆КВО = ВК + КО + ВО = 6 + 6 + 4 = 16 см

Вычислим, на сколько периметр ∆ВОК меньше периметра ∆АКР.

🎦 Видео

Следы прямой Взаимное положение двух прямыхСкачать

Следы прямой  Взаимное положение двух прямых

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

7 класс, 28 урок, Аксиома параллельных прямыхСкачать

7 класс, 28 урок, Аксиома параллельных прямых

Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).

Геометрия 7. Урок 7 - Признаки параллельности прямых.Скачать

Геометрия 7. Урок 7 - Признаки параллельности прямых.

Признаки параллельности прямых. Геометрия 7 класс.Скачать

Признаки параллельности прямых. Геометрия 7 класс.

10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

Признаки параллельности прямых. Первый. Доказательство.Скачать

Признаки параллельности прямых. Первый. Доказательство.

Геометрия 7 класс Атанасян, Бутузов Вопросы к Главе 3Скачать

Геометрия 7 класс Атанасян, Бутузов Вопросы к Главе 3

ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ двух прямых. §14 геометрия 7 классСкачать

ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ двух прямых. §14 геометрия 7 класс

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Признаки параллельности двух прямых - геометрия 7 классСкачать

Признаки параллельности двух прямых - геометрия 7 класс
Поделиться или сохранить к себе: