В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.
- Решения задач о треугольнике онлайн
- Аналитическая геометрия в пространстве с примерами решения и образцами выполнения
- Прямоугольная система координат в пространстве
- Понятие вектора
- Скалярные и векторные величины
- Определение вектора
- Проекция вектора на ось
- Проекции вектора на оси координат
- Направляющие косинусы вектора
- Линейные операции над векторами и их основные свойства
- Сложение двух векторов
- Произведение вектора на число
- Основные свойства линейных операций
- Теоремы о проекциях векторов
- Разложение вектора по базису
- Скалярное произведение векторов. Определение и основные свойства скалярного произведения
- Выражение скалярного произведения через координаты векторов
- Векторное произведение
- Основные свойства векторного произведения
- Выражение векторного произведения через координаты векторов
- Смешанное произведение трех векторов
- Определение и геометрический смысл смешанного произведения
- Выражение смешанного произведения через координаты векторов
- Уравнения поверхности и линии
- Уравнение цилиндрической поверхности
- Уравнения плоскости
- Угол между двумя плоскостями
- Условие параллельности плоскостей
- Условие перпендикулярности плоскостей
- Нормальное уравнение плоскости
- Уравнения прямой
- Канонические уравнения прямой
- Параметрические уравнения прямой
- Угол между прямыми
- Условие параллельности прямых
- Условие перпендикулярности прямых
- Расстояние от точки до прямой
- Взаимное расположение прямой и плоскости
- Условия параллельности и перпендикулярности
- Угол между прямой и плоскостью
- Поверхности второго порядка
- Эллипсоид
- Однополостный гиперболоид
- Двуполостный гиперболоид
- Эллиптический параболоид
- Плоскость в пространстве
- Прямая в пространстве
- Плоскость и прямая в пространстве
- Поверхности второго порядка
- Уравнения поверхности и линии в пространстве
- Уравнение сферы
- Уравнения линии в пространстве
- Уравнения плоскости в пространстве
- Общее уравнение плоскости
- Уравнение плоскости, проходящей через три данные точки
- Уравнение плоскости в отрезках
- Нормальное уравнение плоскости
- Плоскость и её основные задачи
- Расстояние от точки до плоскости
- Уравнения прямой в пространстве
- Векторное уравнение прямой
- Параметрические уравнения прямой
- Канонические уравнения прямой
- Уравнение прямой в пространстве, проходящей через две точки
- Общие уравнения прямой
- Прямая линия в пространстве
- Угол между прямыми. Условия параллельности и перпендикулярности прямых
- Условие, при котором две прямые лежат в одной плоскости
- Прямая и плоскость в пространстве
- Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости
- Пересечение прямой с плоскостью. Условие принадлежности прямой плоскости
- Цилиндрические поверхности
- Поверхности вращения. Конические поверхности
- Канонические уравнения поверхностей второго порядка
- Эллипсоид
- Однополостный гиперболоид
- Двухполостный гиперболоид
- Эллиптический параболоид
- Гиперболический параболоид
- Конус второго порядка
- Решить треугольник Онлайн по координатам
Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Решения задач о треугольнике онлайн
Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти: 
а) длину стороны $AB$; 
б) уравнение медианы $BM$; 
в) $cos$ угла $BCA$; 
г) уравнение высоты $CD$; 
д) длину высоты $СD$; 
е) площадь треугольника $АВС$.
Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.
Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти: 
1) длину стороны $AB$; 
2) внутренний угол $A$ в радианах с точностью до 0,01; 
3) уравнение высоты, проведенной через вершину $C$; 
4) уравнение медианы, проведенной через вершину $C$; 
5) точку пересечения высот треугольника; 
6) длину высоты, опущенной из вершины $C$; 
7) систему линейных неравенств, определяющую внутреннюю область треугольника. 
Сделать чертеж.
Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.
Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.
Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.
Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, — 4)$, $В(3, 0)$ и $С(0, 6)$.
Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Аналитическая геометрия в пространстве с примерами решения и образцами выполнения
Аналитическая геометрия – раздел геометрии, в котором про-стейшие геометрические образы – линии и поверхности (а также их частные случаи прямые и плоскости) исследуются средствами алгеб-ры на основе метода координат.
Видео:Элементы аналитической геометрии в пространстве.Скачать

Прямоугольная система координат в пространстве
Прямоугольная система координат Oxyz в пространстве определяется заданием масштабной единицы измерения длин и трех пересекающихся в одной точке О взаимно перпендикулярных осей:
Ох, Оу и Oz. Точка О — начало координат, Ох — ось абсцисс, Оу — ось координат, Oz — ось аппликат.
Пусть М — произвольная точка пространства (рис. 121). Проведем через точку М три плоскости, перпендикулярные координатным осям Ох, Оу и Oz.
Точки пересечения плоскостей с осями обозначим соответственно через 

т. е. величины направленных отрезков 
Таким образом, при выбранной системе координат каждой точке М пространства соответствует единственная упорядоченная тройка чисел (х; у; z) — ее прямоугольные координаты и, обратно, каждой упорядоченной тройке чисел (х; у; z) соответствует, и притом одна, точка М в пространстве.
Итак, прямоугольная система координат в пространстве устанавливает взаимно однозначное соответствие между множеством всех точек пространства и множеством упорядоченных троек чисел.
Плоскости Оху, Oyz, Oxz называются координатными плоскостями. Они делят все пространство на восемь частей, называемых октантами.
Видео:Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Понятие вектора
Скалярные и векторные величины
Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. 
Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой- либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.
Определение вектора
Любая упорядоченная пара точек А и В пространства определяет направленный отрезок, т. е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В — его концом. Направлением отрезка считают направление от начала к концу.
Определение:
Направленный отрезок называется вектором.
Будем обозначать вектор символом 

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается 
Расстояние между началом и концом вектора называется его длиной и обозначается 
Векторы 
Нулевой вектор будем считать направленным одинаково с любым вектором; длина его равна нулю, т. е. 
Теперь можно сформулировать важное понятие равенства двух векторов.
Определение:
Векторы 

На рис 123 изображены слева неравные, а справа — равные векторы 
Проекция вектора на ось
Пусть в пространстве заданы ось 

Проекцией вектора 



Теорема:
Проекция вектора 


т. е.
где 


Доказательство:
Если 
Если же 
Таким образом, для любого угла 
Замечание 1. Пусть 

т. е. равные векторы имеют равные проекции на одну и ту же ось.
Проекции вектора на оси координат
Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор 
Проекции X, У, Z вектора 
Теорема:
Каковы бы ни были две точки 

Доказательство:
Проведем через точки А и В плоскости, перпендикулярные оси Ох, и обозначим точки их пересечения с осью Ох соответственно через А’ и В’. Точки А’ и В’ на оси Ох
имеют координаты 


Замечание 2. Если вектор 

Направляющие косинусы вектора
Пусть дан произвольный вектор 

Формула (4) выражает длину произвольного вектора через его координаты.
Обозначим через 

 

Возводя в квадрат левую и правую части каждого из равенств (5) и суммируя полученные результаты, имеем 
т. е. сумма квадратов направляющих косинусов любого вектора равна единице.
В заключение пункта рассмотрим задачу. Пусть даны две произвольные точки 
Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать

Линейные операции над векторами и их основные свойства
Линейными операциями над векторами называются операции сложения и вычитания векторов и умножения векторов на числа.
Сложение двух векторов
Пусть даны два вектора 



Замечание:
Действие вычитания векторов обратно действию сложения, т. е. разностью 



Замечание:
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора 



Произведение вектора на число
Пусть даны вектор 







Геометрический смысл операции умножения вектора 










Если 

Замечание:
Используя определение умножения вектора на число, нетрудно доказать, что если векторы 



Видео:Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольникаСкачать

Основные свойства линейных операций
1°. 
Доказательство. Приложив векторы 
2°. 
Доказательство:
Расположим рассматриваемые векторы так, чтобы вектор 






Рассмотрим еще три свойства линейных операций, два из которых относятся одновременно к сложению векторов и умножению вектора на число. Пусть 

Докажем свойство 3°. Если хотя бы одно из чисел 








Докажем свойство 4°. Пусть 







Пусть теперь 











Равенство 4° очевидно, если хотя бы одно из чисел 

Докажем свойство 5°. Пусть 








Если 






Замечание:
Доказанные свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4° и 5° можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».
Видео:Аналитическая геометрия на плоскости. Решение задачСкачать

Теоремы о проекциях векторов
Теорема:
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т. е. 
Доказательство:
Пусть точки 








Теорему можно обобщить на случай любого числа слагаемых.
Теорема:
При умножении вектора 

Доказательство:
Пусть 










при 
Из доказанных теорем вытекают два важных следствия.
Следствие:
Из теоремы 9.3 вытекает, что если 
Следствие:
Из теоремы 9.4 вытекает, что если 

Отсюда легко выводится условие коллинеарности двух векторов в координатах. В самом деле, равенство 


т. е. векторы 
Видео:Уравнения стороны треугольника и медианыСкачать

Разложение вектора по базису
Пусть векторы 
т. е. 

Теорема:
Любой вектор 

где 
Доказательство:
Приложив вектор 

Из равенств (2) получаем
Так как векторы 
где 
Из равенства (3) и соотношений (4) получаем 
Для доказательства единственности представления (1) установим, что
где X, У, Z — координаты вектора 
Покажем, например, что 







Аналогично показывается, что 
Видео:Вычисляем высоту через координаты вершин 1Скачать

Скалярное произведение векторов. Определение и основные свойства скалярного произведения
Определение:
Скалярным произведением двух ненулевых векторов 
Скалярное произведение векторов 

где 

Так как 
Типичным примером скалярного произведения в физике является формула работы 
где вектор 

Рассмотрим некоторые свойства скалярного произведения. 
1°. 
Доказательство:
По определению скалярного произведения 

2°. 
Замечание:
Из свойств 1° и 2° следует, что 
3°. 
Доказательство. По формуле (1)
Замечание:
Доказанное свойство дает право при скалярном умножении векторных многочленов выполнять действия почленно. В силу свойства 1° можно при этом не заботиться о порядке сомножителей, а свойство 2° позволяет (см. замечание 1) объединить числовые коэффициенты векторных сомножителей. Например
4°. 
Доказательство:
По определению скалярного произведения 





Скалярное произведение 



5″. 


Доказательство:
По определению скалярного произведения 


Обратно, если 

Замечание:
Из свойств 4° и 5° для базисных векторов 
Выражение скалярного произведения через координаты векторов
Теорема:
Если векторы 

Доказательство:
Разложим векторы 

Откуда, используя равенства (2), находим: 
Из теоремы 9.6 вытекают два важных следствия.
Следствие 1. Необходимым и достаточным условием перпендикулярности векторов 
Это утверждение непосредственно следует из свойства 5° и теоремы 9.6
Следствие:
Угол между векторами 
 
Действительно, по определению скалярного произведения 
В силу теоремы 9.6 и формулы (4) § 2 из формулы (5) следует формула (4).
Пример:
Даны три точки 
Найти угол 
Решение:
Применяя теорему 9.2, найдем АВ = < 1; 1; 0),

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Векторное произведение
Определение векторного произведения: Векторы 
Тройка векторов называется упорядоченной, если указано, какой из них считается первым, какой вторым и какой третьим.
Например, в записи 

 





Упорядоченная тройка некомпланарных векторов называется правой, если после приведения их к общему началу из конца третьего вектора кратчайший поворот от первого ко второму виден совершающимся против часовой стрелки. В противном случае тройка называется левой.
Определение:
Векторным произведением вектора 





2) вектор 

3) векторы 
Заметим, что условия 2) и 3) относятся к случаю, когда 






Понятие векторного произведения имеет свой источник в механике.
Пусть в точке М твердого тела приложена сила 





2) перпендикулярен плоскости 
3) направлен так, что из конца его сила 




Основные свойства векторного произведения
1°. 

Доказательство:
Если векторы 

Следовательно, 
2°. Длина векторного произведения неколлинеарных векторов 
Доказательство:
Как известно из элементарной геометрии, площадь параллелограмма равна произведению его смежных сторон на синус угла между ними. Отсюда 

3°. 
Доказательство:
Если векторы 




4°. 


















Используя свойства 3° и 4°, докажите самостоятельно, что 
5° 
Доказательство. Если векторы 






Спроектируем треугольник ОАВ на плоскость 












Рассмотрим вектор 




Проводя аналогичные рассуждения для каждого из векторов 
Но так как 
Вектор 







Замечание:
Доказанное свойство дает право при вектор, ном умножении векторных многочленов выполнять действия почленно, а свойство 4°— объединить числовые коэффициенты векторных сомножителей. Например,
Следует, однако, помнить, что порядок сомножителей векторного произведения является существенным и при перестановке сомножителей знак векторного произведения можно изменить. 
Замечание:
Согласно определению и свойствам 1° и 3°
векторного произведения для базисных векторов (рис. 144) получаем следующие равенства: 
Выражение векторного произведения через координаты векторов
Теорема:
Если векторы 

произведение вектора 

Эту формулу с помощью определителей второго порядка можно записать в виде 
Доказательство:
Разложим векторы 

Используя замечание 1, получаем
Отсюда, на основании равенств (2), находим
Получено разложение вектора 


Пример:
Даны векторы 

Решение. По формуле (3) находим 
Видео:Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Смешанное произведение трех векторов
Определение и геометрический смысл смешанного произведения
Определение:
Смешанным произведением трех векторов 


Следующая теорема выражает геометрический смысл смешанного произведения.
Теорема:
Смешанное произведение 






Доказательство:
Пусть даны некомпланарные векторы 


где 








Докажем второе утверждение. Пусть векторы 







Итак, доказано, что если векторы 





Следствие:
Из теоремы легко выводится следующее тождество 
т. е. знаки 
Действительно, согласно свойству 1° скалярного произведения 
Далее, по теореме 9.8 имеем
Так как тройки 
и на основании равенства (2)
т. е. получено тождество (1).
В силу тождества (1) смешанные произведения 


Выражение смешанного произведения через координаты векторов
Теорема:
Если векторы 
то смешанное произведение 
 
Доказательство:
По теореме 9.7
Имеем: 
Умножая скалярно вектор 

Пример:
В пространстве даны четыре точки: А(1; 1; 1), В (4; 4; 4), С (3; 5; 5), D (2; 4; 7). Найти объем тетраэдра АВСD.
Решение:
Как известно из элементарной геометрии, объем 





Отсюда
Уравнения поверхности и линии
Пусть заданы прямоугольная система координат Oxyz, произвольная поверхность S (рис. 146) и уравнение 
Будем говорить, что уравнение (1) является уравнением поверхности S в заданной системе координат, если ему удовлетворяют координаты любой точки 
С точки зрения данного определения поверхность S есть множество точек, координаты которых удовлетворяют уравнению (1).
Пример:
В прямоугольной системе координат уравнение 
определяет поверхность, являющуюся сферой радиуса R с центром в точке О (0; 0; 0) (рис. 147).
В самом деле, если М (х; у, z) — произвольная точка, то по формуле (7) (см. § 2, п. 5)
Следовательно, заданному уравнению удовлетворяют координаты тех и только тех точек, которые удалены от точки О на расстояние R. Таким образом, множество точек, координаты которых удовлетворяют этому уравнению, есть сфера с центром в начале координат и радиусом R.
Линию в пространстве можно рассматривать как пересечение двух поверхностей, т. е. как множество точек, находящихся одновременно на двух поверхностях, и соответственно этому определять линию заданием двух уравнений. Таким образом, два уравнения
называются уравнениями линии L, если им удовлетворяют координаты любой точки, лежащей на L, и не удовлетворяют координаты никакой точки, не лежащей на линии L.
Например, уравнения двух сфер 
совместно определяют лежащую в плоскости Оху окружность, радиус которой равен единице с центром в начале координат.
Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Уравнение цилиндрической поверхности
Пусть в плоскости Оху лежит некоторая линия L (рис. 148). Проведем через каждую точку линии L прямую, параллельную оси Oz. Множество этих прямых образует некоторую поверхность S, которая называется цилиндрической. Указанные прямые называются образующими поверхности S, а линия L — ее направляющей.
Аналогично определяется .цилиндрическая поверхность с образующими, параллельными осям Ох и Оу.
Для определенности будем рассматривать цилиндрическую поверхность S с образующими, параллельными оси Oz, и докажем, что она определяется уравнением вида 
Действительно, пусть (1) — уравнение направляющей L. Возьмем на S любую точку М (х; у; z). Эта точка лежит на какой-то образующей. Если 



Таким образом, уравнение цилиндрической поверхности с образующими, параллельными оси Oz, не содержит координаты z и совпадает с уравнением направляющей. Например, если направляющей является эллипс 
то соответствующая цилиндрическая поверхность называется эллиптическим цилиндром, а (2) — ее уравнением.
Заметим, что на плоскости Оху уравнение F (х; у)= 0 определяет линию L, но эта же линия в пространственной системе координат Oxyz задается двумя уравнениями 
Так, например, в пространственной системе координат Oxyz уравнение 
Видео:Решение треугольника по точкам. Аналитическая геометрияСкачать

Уравнения плоскости
Покажем, что поверхности первого порядка плоскости и только плоскости, и рассмотрим два вида уравнений плоскости.
Общее уравнение плоскости:
Пусть заданы: прямоугольная система координат Oxyz, произвольная плоскость 



Рассмотрим произвольную точку М (х, у, z). Точка М лежит на плоскости 




Это и есть искомое уравнение плоскости 

Раскрывая скобки, приведем уравнение (1) к виду 
Далее, обозначая число 
Уравнение (2) называется общим уравнением плоскости. Таким образом, плоскость является поверхностью первого порядка, так как определяется уравнением первой степени.
Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость.
Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение 




Таким образом, существует хотя бы одна точка 


 



Вектор 
Пример:
Составить уравнение плоскости, проходящей через точку 
Решение. По формуле (1) искомое уравнение таково: 
Теорема:
Если два уравнения 

Доказательство:
Действительно, векторы 



или 


Угол между двумя плоскостями
Рассмотрим две плоскости 
При любом расположении плоскостей 


Второй угол равен 180° — 
Условие параллельности плоскостей
Если плоскости 

Условие (4) является условием параллельности плоскостей 
Условие перпендикулярности плоскостей
Если плоскости 



Нормальное уравнение плоскости
Расстояние от точки до плоскости. Пусть заданы прямоугольная система координат Охуz и произвольная плоскость 

На нормали введем направление от точки О к точке Р. Если точки О и Р совпадают, то возьмем любое из двух направлений на нормали. Пусть 
Выведем уравнение данной плоскости л, считая известными числа 

Так как 
Пусть М (х; у; z) — произвольная точка. Она лежит на плоскости 

Заметим теперь, что 
Из равенств (6) и (7) получаем, что точка М (х; у; z) лежит на плоскости 
которое и является искомым уравнением данной плоскости. Уравнение плоскости в виде (8) называется нормальным.
Теорема:
Если точка М* имеет координаты х*, у*, z*, а плоскость задана нормальным уравнением
Доказательство:
Пусть Q — проекция точки М* на направленную нормаль (рис. 151); тогда в силу основного тождества (см. гл. 1, § 3) PQ=OQ—ОР, откуда
Вектор 
Из равенств (9) и (10) окончательно получаем 
Покажем теперь, как привести общее уравнение плоскости к нормальному виду. Пусть 
— общее уравнение некоторой плоскости, а
— ее нормальное уравнение. Так как уравнения (11) и (12) определяют одну и ту же плоскость, то по теореме 9.10 коэффициенты этих уравнений пропорциональны. Это означает, что умножая все члены (11) на некоторый множитель 
совпадающее с уравнением (12), т. е. имеем
Чтобы найти множитель 
Но согласно формуле (6) из § 2 правая часть последнего равенства Равна единице. Следовательно,
Число 



Если в уравнении (11) D=О, то знак нормирующего множителя выбирается произвольно.
Пример:
Даны плоскость 
Решение:
Чтобы использовать теорему 9.11, надо прежде всего привести данное уравнение к нормальному виду. Для этого найдем нормирующий множитель
Умножая данное уравнение на 
Подставляя в левую часть этого уравнения координаты точки М*, имеем
Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Уравнения прямой
Как уже было отмечено, линию в пространстве можно рассматривать как пересечение двух поверхностей и определять заданием двух уравнений. В частности, каждую прямую линию можно рассматривать как пересечение двух плоскостей и соответственно этому определять заданием двух уравнений первой степени.
Пусть заданы некоторая прямоугольная система координат Oxyz и произвольная прямая L. Обозначим через 
Два уравнения вида (1) совместно определяют прямую L в том и только в том случае, когда плоскости 



Уравнения (1) называются общими уравнениями прямой.
Канонические уравнения прямой
Для решения задач уравнения (1) не всегда удобны, поэтому используют специальный вид уравнений прямой.
Пусть дана какая-нибудь прямая L и ненулевой вектор 



Пусть М(х; y; z) — произвольная точка. Она лежит на прямой тогда и только тогда, когда вектор 



Уравнения (2) и являются искомыми. Они называются каноническими уравнениями прямой.
Для того чтобы составить канонические уравнения (2), если прямая L задана уравнениями (1), необходимо:
1) найти какую-нибудь точку 

2) найти направляющий вектор 









Пример:
Найти канонические уравнения прямой 
Решение:
Полагая, например, 
получаем 





Параметрические уравнения прямой
Иногда прямую полезно задавать не в виде канонических уравнений (2), а иначе. Пусть прямая L задана уравнениями (2). Обозначим через t каждое из равных отношений. Тогда
Равенства (3) называются параметрическими уравнениями прямой L, проходящей через точку 


Параметрические уравнения удобны в тех случаях, когда требуется найти точку пересечения прямой с плоскостью. В самом деле, пусть непараллельные плоскость 
Для определения точки пересечения прямой и плоскости подставим выражения для х, у, z из уравнений L в уравнение 
причем знаменатель дроби не равен нулю, так как плоскость не параллельна прямой (см. § 13). Подставляя найденное значение t в уравнения прямой, находим искомую точку М (х; у; z). пересечения прямой L с плоскостью 
Угол между прямыми
Рассмотрим две прямые 
При любом расположении прямых 




Условие параллельности прямых
Прямые 


Условие перпендикулярности прямых
Прямые 


Расстояние от точки до прямой
В заключение рассмотрим задачу: найти расстояние d от данной точки до данной прямой в пространстве.
Пусть дана прямая L: 
и точка 

Пусть вектор 




Видео:11. Прямая в пространстве и ее уравненияСкачать

Взаимное расположение прямой и плоскости
Условия параллельности и перпендикулярности
Пусть заданы прямая 
 
Прямая параллельна плоскости в том и только в том случае, когда ее направляющий вектор 

Прямая перпендикулярна плоскости в том и только в том случае, когда её направляющий вектор коллинеарен нормальному вектору плоскости. Отсюда получаем условие перпендикулярности прямой и плоскости:
Угол между прямой и плоскостью
Пусть заданы плоскостью: 
не перпендикулярная плоскости. Под углом 









Видео:✓ Аналитическая геометрия. Начало | Для студентов и школьников | #ТрушинLive #046 | Борис ТрушинСкачать

Поверхности второго порядка
Поверхности второго порядка — это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени.
Геометрическое исследование поверхностей второго порядка проведем по заданным уравнениям с помощью метода параллельных сечений.
Эллипсоид
Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением 
Уравнение (1) называется каноническим уравнением эллипсоида.
Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного эллипсоида плоскостями, параллельными плоскости Оху. Каждая из таких плоскостей определяется уравнением вида z=h, где h — любое число, а линия, которая получается в сечении, определяется двумя уравнениями 
Исследуем уравнения (2) при различных значениях h.
1) Если 
2) Если 


3) Если 
откуда следует, что плоскость z—h пересекает эллипсоид по эллипсу с полуосями 

Аналогичная картина получается и при пересечении данной поверхности плоскостями, параллельными координатным плоскостям Oxz и Oyz.
Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как замкнутую овальную поверхность (рис. 156). Величины a, b, с называются полуосями эллипсоида. В случае а=Ь=с эллипсоид является сферой.
Однополостный гиперболоид
Однополостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением 
Уравнение (3) называется каноническим уравнением однополостного гиперболоида.
Установим вид поверхности (3). Для этого рассмотрим сечения ее координатными плоскостями Oxz (у=0) и Oyz (х=0). Получаем соответственно уравнения
из которых следует, что в сечениях получаются гиперболы.
Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Оху. Линия, получающаяся в сечении, определяется уравнениями
из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями 

Таким образом, рассмотренные сечения позволяют изобразить однополостный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Оху (рис. 157).
Величины а, b, с называются полуосями однополостного гиперболоида, первые две из них изображены на рис. 157, а чтобы изобразить на чертеже полуось с, следует подстроить основной прямоугольник какой-нибудь из гипербол.
Двуполостный гиперболоид
Двуполостным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
Уравнение (5) называется каноническим уравнением двуполостного гиперболоида.
Установим геометрический вид поверхности (5). Для этого рассмотрим ее сечения координатными плоскостями Oxz и Oyz. Получаем соответственно уравнения 
из которых следует, что в сечениях получаются гиперболы.
Теперь рассмотрим сечения данного гиперболоида плоскостями z=h параллельными координатной плоскости Оху. Линия, получающаяся в сечении, определяется уравнениями
из которых следует, что при 



При h=±c уравнениям (6) удовлетворяют координаты только двух точек: 

При 
Таким образом, рассмотренные сечения позволяют изобразить двуполостный гиперболоид как поверхность, состоящую из двух отдельных «полостей» (отсюда название двуполостный), каждая из которых имеет вид бесконечной выпуклой чаши (рис. 158).
Величины а, b, с называются полуосями двуполостного гиперболоида. На рис. 158 изображена величина с. Чтобы изобразить на чертеже а и b, нужно построить основные прямоугольники гипербол в плоскостях Oxz и Oyz.
Эллиптический параболоид
Эллиптическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
Уравнение (7) называется каноническим уравнением эллиптического параболоида.
Исследуем с помощью сечений эту поверхность. Рассмотрим сначала сечения данной поверхности координатными плоскостями Oxz и Oyz. Получаем соответственно уравнения
из которых следует, что в сечениях получаются параболы, симметричные относительно оси Oz, с вершинами в начале координат.
Теперь рассмотрим сечения данного параболоида плоскостями z=h, параллельными координатной плоскости Оху. Линия, получающаяся в сечении, определяется уравнениями
из которых следует, что при 
При увеличении h величины а* и b* также увеличиваются; при h=0 эллипс вырождается в точку (плоскость z=0 касается данного параболоида). При h Гиперболический параболоид
Гиперболическим параболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
Уравнение (9) называется каноническим уравнением гиперболического параболоида.
Установим геометрический вид поверхности (9). Рассмотрим сечение параболоида координатной плоскостью Oxz (у=0). Получаем уравнения 
из которых следует, что в сечении получается парабола, направленная вверх, симметричная относительно оси Oz, с вершиной в начале координат. В сечениях поверхности плоскостями, параллельными плоскости Oxz (y = h), получаются также направленные вверх параболы 
Рассмотрим сечение данного параболоида плоскостью Oyz (x=0). Получаем уравнения 
из которых следует, что и в этом случае в сечении получается парабола, но теперь направленная вниз, симметричная относительно оси Oz, с вершиной в начале координат. Рассмотрев сечения параболоида плоскостями, параллельными плоскости Oyz (x=h), получим уравнения 
из которых следует, что при любом h в сечении получается парабола, направленная вниз, а вершина ее лежит на параболе, определенной уравнениями (10).
Рассмотрим, наконец, сечения параболоида плоскостями z=h, параллельными плоскости Оху. Получим уравнения
из которых следует, что при h>0 в сечении получаются гиперболы, пересекающие плоскость Oxz при h 0 и h Конус второго порядка
Конусом второго порядка называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
Уравнение (11) называется каноническим уравнением конуса второго порядка. Рассмотрим геометрические свойства конуса. В сечение этой поверхности плоскостью Oxz (y=0) получаем линию
распадающуюся на две пересекающиеся прямые
Аналогично, в сечении конуса плоскостью Оуz (х=0) также получаются две пересекающиеся прямые 
Рассмотрим теперь сечения данной поверхности плоскостями z=h, параллельными плоскости Оху. Получим уравнения 
из которых следует, что при h>0 и h Аналитическая геометрия в пространстве — решение заданий и задач по всем темам с вычислением
Плоскость в пространстве
1°. Всякая плоскость определяется уравнением первой степени относительно декартовых координат переменной точки плоскости. Всякое уравнение первой степени относительно декартовых координат определяет плоскость.
2°. Уравнение плоскости, проходящей через данную точку 
 

3°. Общее уравнение плоскости
 
Примечание:
На самом деле в качестве нормального вектора плоскости можно брать любой вектор, коллинеарный 
1) если D = 0, т. е. Ах + By + Cz = 0, то плоскость проходит через начало координат;
2) отсутствие в общем уравнении плоскости коэффициента при какой-либо переменной означает, что нормальный вектор 
Например, если А = 0, то уравнение плоскости имеет вид By + Cz + D = 0, ее нормальный вектор 

 
плоскость параллельна оси Оу (рис. 4.2,6); если В = С = 0, т.е. Ах + D = 0, то 
4°. Уравнение плоскости, проходящей через три данные точки 
 
5°. Уравнение плоскости, отсекающей на координатных осях отрезки а, b, с (рис. 4.3), имеет вид
 
и называется уравнением плоскости в отрезках.
 
6°. Если |р| есть длина перпендикуляра, опущенного из начала координат на плоскость (рис. 4.4), a 

Общее уравнение плоскости всегда можно привести к нормальному виду умножением всех его членов на нормирующий множитель
 
где знак перед корнем берется противоположным знаку D.
7°. Расстояние d от точки 
 
8°. Угол между плоскостями, заданными уравнениями
 
есть двугранный угол (рис. 4.5), который измеряется углом 
 
Условие перпендикулярности плоскостей равносильно условию перпендикулярности их нормальных векторов: 

 
Примеры с решениями
Пример:
Построить плоскости, заданные уравнениями:
 
Решение:
а) Данное уравнение приводим к уравнению в отрезках:
 
На оси Ох откладываем отрезок 
Оу — отрезок b = 4, на оси Oz — отрезок с = 2. Остается соединить полученные точки (получаем сечения плоскости координатными плоскостями, рис. 4.6, а).
 
б) Данная плоскость содержит ось Oz и пересекает плоскость Оху по прямой х — у = 0, принадлежащей этой плоскости (рис. 4.6, б).
в) Это неполное уравнение плоскости, параллельной оси Oz. Она пересекает плоскость Оху по прямой 2х + Зу — 6 = 0. Добавим, что эта плоскость перпендикулярна вектору 
г) Плоскость перпендикулярна вектору 
Пример:
Составить уравнение плоскости, отсекающей на оси Ох отрезок OA = 3 и перпендикулярной вектору 
Решение:
По условию точка A(3,0,0) принадлежит искомой плоскости. Согласно п. 3° уравнение этой плоскости имеет вид
 
Пример:
Составить уравнение плоскости, параллельной оси Oz и проходящей через точки (1,0,1) и (-2,1,3).
Решение:
Уравнение плоскости, параллельной оси Oz, имеет вид Ах + By + D = 0. Подставив сюда координаты заданных точек плоскости, получим систему для определения коэффициентов уравнения:
 
т. е. Ах + 3Ay — А = 0, или х + 3у — 1 =0.
Пример:
Установить, что плоскости с уравнениями 2х + 3у —4z + 1= 0 и 5х-2y+ z + 6 = 0 перпендикулярны.
Решение:
Запишем нормальные векторы данных плоскостей: 

Пример:
Найти расстояние от точки А(2,3,-4) до плоскости 2х + 6у — 3z + 16 = 0.
Решение:
По формуле п. 7° имеем
 
 
Пример:
Составить уравнение плоскости, проходящей через точки 
Решение:
Согласно п. 4е уравнение искомой плоскости определяется равенством
 
Раскрываем определитель (гл. I) по элементам первой строки:
 
Прямая в пространстве
1°. Прямую в пространстве можно определить как линию пересечения двух плоскостей. Система уравнений
 
задает общие уравнения прямой.
2°. Канонические уравнения прямой
 
определяют прямую, проходящую через точку 

 
3°. Параметрические уравнения прямой имеют вид
 
где параметр t изменяется в интервале 
4°. Уравнения прямой, проходящей через две заданные точки
 
(если знаменатель какой-либо дроби равен нулю, то ее числитель тоже равен нулю).
5°. Для приведения общих уравнений прямой к каноническому виду следует:
- взять две точки на прямой, для чего одной переменной нужно придать два числовых значения и решить систему уравнений относительно других переменных (или взять два значения параметра t)
- написать уравнения прямой, проходящей через две точки (п. 4°).
6°. Направляющий вектор 
 
имеет вид: 
векторов 
 
7°. Под углом между двумя скрещивающимися прямыми, заданными каноническими уравнениями
 
следует понимать угол 
 
Условие перпендикулярности прямых есть вместе с тем условие перпендикулярности их направляющих векторов:
 
Условие параллельности прямых совпадает с условием коллинеарности направляющих векторов:
 
Примеры с решениями
Пример:
Привести к каноническому виду общие уравнения 
прямой
 
Решение:
Канонические уравнения прямой составим по двум точкам (как в п. 4°). Координаты двух точек прямой найдем по схеме п. 5°.
1) Положим, например, 
 
Точка 
2) Аналогично, пусть 
 
Точка 
3) Запишем уравнения прямой, проходящей через две точки (п. 4°):
 
Пример:
Для направляющего вектора прямой
Г 2х — Зу — 3z + 4 = О, x + 2y + z- 5 = 0
 
найти направляющие косинусы.
Решение:
Согласно п. 6° найдем направляющий вектор 
 
Найдем 
Теперь (гл. Ill)
 
Пример:
Составить уравнения прямой, проходящей через точку А(-2,3,1) параллельно прямой
 
Решение:
Чтобы записать канонические уравнения прямой (п. 2°), нам недостает направляющего вектора, который определим по п. 6° (см. пример 2):
 
Искомые уравнения имеют вид
 
Плоскость и прямая в пространстве
1°. Углом между прямой и плоскостью называется угол 
Пусть 

 
Условие перпендикулярности прямой и плоскости совпадает с условием параллельности векторов 
Условие параллельности прямой и плоскости совпадает с условием перпендикулярности векторов 
2°. Координаты точки пересечения прямой 
3°. Координаты точки пересечения трех плоскостей определяются решением системы уравнений этих плоскостей:
 
Примеры с решениями
Пример:
Даны вершины тетраэдра A(2,3,1), В(4,1,-2), С(6,3,7), D(-5,-4,8). Найти:
- длину ребра АВ
- угол между ребрами АВ и AD
- угол между ребром AD и плоскостью АВС
- объем тетраэдра ABCD
- уравнение ребра АВ
- уравнение плоскости АВС
- уравнение высоты, опущенной из D на АВС
- проекцию О точки D на основание ABC
- высоту DO.
Решение:
Условию задачи удовлетворяет построенный чертеж (рис. 4.11).
1) АВ вычислим по формуле
 
2) Угол 
 
3) Синус угла 



 
Принимаем 
 
4) Объем тетраэдра ABCD равен 1/6 модуля смешанного произведения векторов 
 
Искомый объем равен: 
5) Уравнения прямой, проходящей через две точки, имеют вид 

Принимаем 
 
6) Уравнение плоскости, проходящей через три данные точки:
 
 
или, после раскрытия определителя: Зх + 6у — 2z — 22 = 0.
7) В качестве направляющего вектора 

 
 
8) Проекция D на AВС — это точка О (точка пересечения DO с ABC). Значения х, у и z, выраженные через параметр t, подставим в уравнение AВС. Найдем значение t и подставим обратно в выражения для х, у и z.
 
9) Высоту DO можно вычислить как расстояние между D и О, или как расстояние от D до плоскости, или используя формулу для объема тетраэдра.
В любом случае получим
 
Пример:
Найти координаты точки Q, симметричной точке Р( —6,7,-9) относительно плоскости, проходящей через точки A(1,3,-1), B(6,5,-2) и С(0, -3, -5).
Решение:
Воспользуемся эскизом задачи (рис. 4.13).
 
1) Составим уравнение плоскости 
 
Подробности опускаем, так как подобное действие выполнили в предыдущей зада-Рис. 4.13 че. После раскрытия определителя получаем уравнение (ABC) : 2х — 3у + 4z + 11 =0. 
2) Напишем уравнение прямой l, проходящей через точку Р перпендикулярно 
 
3) Определим координаты точки О пересечения l и 
4) Точка 0(—2,1, — 1) делит отрезок PQ пополам, т.е., в частности, 


 
Пример:
Найти координаты точки Q, симметричной точке Р(1,3,2) относительно прямой АВ, где А(1, 2, -6), B(7,-7,6).
Решение:
1) Имеем 
 
 
2) Уравнение плоскости 
 
3) Находим координаты точки О пересечения АВ и 
4.Координаты Q вычислим по уже использованным ранее формулам: 
Пример:
Определить расстояние от точки Р(—7,-13,10) до прямой
 
Решение:
1) Через Р проводим плоскость а перпендикулярно 


2) Находим координаты точки О пересечения 
3) Искомое расстояние равно
 
Ответ, 
Пример:
При каких значениях В и С прямая 
Решение:
Условие перпендикулярности прямой и плоскости равносильно условию параллельности их векторов 
 
Пример:
Через прямую с общими уравнениями
 
и начало координат провести плоскость и составить ее уравнение.
Решение:
Задачу сводим к построению плоскости по трем точкам. Подставляем z = -2 в исходную систему и решаем ее относительно х, у. Получаем одну точку 

т.е. 18х — 8у + 23z = 0.
Пример:
Составить уравнение плоскости, содержащей точку 
Решение:
Из уравнения прямой известны координаты точки 
Пусть M(x,y,z) — текущая точка плоскости (рис. 4.15). Тогда векторы 

 
Уравнение искомой плоскости имеет вид
 
Раскрывая определитель по элементам первой строки, упрощаем: 5х + 2у — 3z — 17 = 0.
 
Пример:
Найти расстояние от точки 
 
Решение:
Искомое расстояние можно найти как высоту h параллелограмма, построенного на векторах (рис. 4.16)
 
Площадь параллелограмма, как известно, равна модулю векторного произведения векторов 
Таким образом, 
Сравните с примером 4.
Поверхности второго порядка
1°. Если в пространстве 
2°. Для поверхностей второго порядка перечислим канонические уравнения и приведем эскизы.
1) Сфера радиуса R с центром в начале координат (рис. 4.17):
 
 
изображает сферу радиуса R с центром в точке 
2) Эллипсоид с полуосями a, b, с и центром в начале координат (рис. 4.18)
При а = b = с = R эллипсоид превращается в сферу радиуса R.
3) Гиперболоид однополостный (рис. 4.19):
 
Сечения гиперболоида горизонтальными плоскостями z = h являются эллипсами:
 
Сечения гиперболоида вертикальными плоскостями х = h или у = h являются гиперболами:
 
4) Гиперболоид двуполостный (рис. 4.20):
 
Сечения гиперболоида горизонтальными плоскостями 
 
Сечения гиперболоида вертикальными плоскостями х = h или у = h являются гиперболами:
 
5) Параболоид эллиптический (рис. 4.21):
 
Сечения параболоида горизонтальными плоскостями 
 
Сечения параболоида вертикальными плоскостями х = h или у = h являются параболами:
 
6) Параболоид гиперболический (рис. 4.22):
 
Сечения параболоида горизонтальными плоскостями z = h суть гиперболы 
 
7) Конус эллиптический с вершиной в начале координат (рис. 4.23):
 
Если а = b, то конус круглый или круговой. Сечения конуса горизонтальными плоскостями являются эллипсами:
 
(при h = 0 эллипс вырождается в точку). Сечения конуса вертикальными плоскостями х = h и у = h являются гиперболами:
 
3°. К поверхностям второго порядка относятся цилиндры, направляющие которых — линии второго порядка. Мы ограничимся перечислением цилиндров, направляющие которых расположены в плоскости Оху, а образующие — прямые, параллельные оси Oz, что является следствием отсутствия переменной г в уравнении поверхности F(x,y)= 0.
 
Различают следующие цилиндры: 1) Эллиптический (рис. 4.24):
 
Если а = b = R, то цилиндр — круговой: 
2) Гиперболический (рис. 4.25):
 
3) Параболический (рис. 4.26):
 
Примеры с решениями
Пример:
Определить тип поверхности и сделать чертеж:
 
Решение:
а) Запишем данное уравнение в виде 
б) Переписав уравнение поверхности в виде 
 
в) Переписав уравнение поверхности в виде 
г) Переписав уравнение поверхности в виде 
Пример:
Определить тип поверхности и сделать чертеж:
 
Решение:
а) Так как в уравнении поверхности отсутствует переменная z, то это цилиндр с образующими, параллельными оси Oz, и направляющей — параболой (рис. 4.30) с уравнениями
 
б) Так как в уравнении поверхности отсутствует переменная у, то это цилиндр с образующими, параллельными оси Оу, и направляющей — параболой (рис. 4.31) с уравнениями
 
в) Цилиндр с образующими, параллельными оси Ох, и направляющей — окружностью радиуса 2 с уравнениями (рис. 4.32)
 
Пример:
Начертить тело, ограниченное данными поверхностями:
 
Решение:
а) Первая поверхность — эллиптический параболоид 
б) z = 0 — это координатная плоскость Оху, у + z = 2 — это плоскость, параллельная оси 
в) Тело ограничено параболоидом и конусом (рис. 4.35).
 
Видео:Аналитическая геометрия в пространстве. Часть 1. Решение задачСкачать

Уравнения поверхности и линии в пространстве
Поверхность в пространстве, как правило, можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке 
Прямоугольная система координат Oxyz в пространстве позволяет установить взаимно однозначное соответствие между точками пространства и тройками чисел х, у и z — их координатами. Свойство, общее всем точкам поверхности, можно записать в виде уравнения, связывающего координаты всех точек поверхности.
Уравнением данной поверхности в прямоугольной системе координат Oxyz называется такое уравнение 
Уравнение поверхности позволяет изучение геометрических свойств поверхности заменить исследованием его уравнения. Так, для того, чтобы узнать, лежит ли точка 

Уравнение сферы
Найдем уравнение сферы радиуса R с центром в точке 



 
 
Это и есть искомое уравнение сферы. Ему удовлетворяют координаты любой ее точки и не удовлетворяют координаты точек, не лежащих на данной сфере.
Если центр сферы 
Если же дано уравнение вида F(x; у; z) = 0, то оно, вообще говоря, определяет в пространстве некоторую поверхность.
Выражение «вообще говоря» означает, что в отдельных случаях уравнение F(x; у, z ) = 0 может определять не поверхность, а точку, линию или вовсе не определять никакой геометрический образ. Говорят, «поверхность вырождается».
Так, уравнению 

Итак, поверхность в пространстве можно задать геометрически и аналитически. Отсюда вытекает постановка двух основных задач:
- Дана поверхность как геометрическое место точек. Найти уравнение этой поверхности.
- Дано уравнение F(x; у, z) = 0. Исследовать форму поверхности, определяемой этим уравнением.
Уравнения линии в пространстве
Линию в пространстве можно рассматривать как линию пересечения двух поверхностей (см. рис. 66) или как геометрическое место точек, общих двум поверхностям.
Если 
 
Уравнения системы (12.1) называются уравнениями линии в пространстве. Например, 
Линию в пространстве можно рассматривать как траекторию движения точки (см. рис. 67). В этом случае ее задают векторным уравнением
 
или параметрическими уравнениями
 
проекций вектора (12.2) на оси координат.
Например, параметрические уравнения винтовой линии имеют вид
 
Если точка М равномерно движется по образующей кругового цилиндра, а сам цилиндр равномерно вращается вокруг оси, то точка М описывает винтовую линию (см. рис. 68).
Уравнения плоскости в пространстве
Простейшей поверхностью является плоскость. Плоскость в пространстве Oxyz можно задать разными способами. Каждому из них соответствует определенный вид ее уравнения.
Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору
Пусть в пространстве Oxyz плоскость Q задана точкой 

 
При любом расположении точки М на плоскости Q векторы 
 

 
Координаты любой точки плоскости Q удовлетворяют уравнению (12.3), координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (для них 
Уравнение (12.3) называется уравнением плоскости, проходящей через данную точку 


Придавая коэффициентам А, В и С уравнения (12.3) различные значения, можно получить уравнение любой плоскости, проходящей через точку 
Общее уравнение плоскости
Рассмотрим общее уравнение первой степени с тремя переменными х, у и z:
 
Полагая, что по крайней мере один из коэффициентов А, В или С не равен нулю, например 
 
Сравнивая уравнение (12.5) с уравнением (12.3), видим, что уравнения (12.4) и (12.5) являются уравнением плоскости с нормальным вектором 

Итак, уравнение (12.4) определяет в системе координат Oxyz некоторую плоскость. Уравнение (12.4) называется общим уравнением плоскости.
Частные случаи общего уравнения плоскости:
- ЕслиD = 0, то оно принимает вид Ах + By + Cz = 0. Этому уравнению удовлетворяет точка О(0; 0;0). Следовательно, в этом случае плоскостьпроходит через начало координат.
- ЕслиС = 0, то имеем уравнение Ах + By + D = 0. Нормальный вектор перпендикулярен оси Oz. Следовательно, плоскость параллельна осиOz; если В = 0 — параллельна оси Оу, А = 0 — параллельна оси Ох. 
- Если С = D = 0, то плоскость проходит через О(0; 0; 0) параллельно оси Oz, т. е. плоскость Ах + By = 0проходит через ось Oz. Аналогично, уравнениям By + Cz = 0 и Ах + Cz = 0 отвечают плоскости, проходящие соответственно через оси Ох и Оу.
- Если А = В = 0, то уравнение (12.4) принимает вид Cz + D = 0, т. е. Плоскость параллельна плоскостиОху. Аналогично, уравнениям Ах + D = 0 и By + D = 0 отвечают плоскости, соответственно параллельные плоскостям Oyz и Oxz. 
- Если А = В = D = 0, то уравнение (12.4) примет вид Cz = 0, т. е. z = 0. Это уравнение плоскостиОху. Аналогично: у = 0 — уравнение плоскости Oxz; х = 0 — уравнение плоскости Oyz.
Уравнение плоскости, проходящей через три данные точки
Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Найдем уравнение плоскости Q, проходящей через три данные точки 
Возьмем на плоскости произвольную точку M(x;y;z) и составим векторы 
 
Уравнение (12.6) есть уравнение плоскости, проходящей через три данные точки.
Уравнение плоскости в отрезках
Пусть плоскость отсекает на осях Ох, Оу и Oz соответственно отрезки a, b и с, т. е. проходит через три точки А(а;0;0), В(0;b;0) и С(0;0;c) (см. рис. 70).
Подставляя координаты этих точек в уравнение (12.6), получаем
 
Раскрыв определитель, имеем bcx — 

 
Уравнение (12.7) называется уравнением плоскости в отрезках на осях. Им удобно пользоваться при построении плоскости.
Нормальное уравнение плоскости
Положение плоскости Q вполне определяется заданием единичного вектора 
Пусть 



При любом положении точки М на плоскости Q проекция радиус-вектора 



 
Уравнение (12.8) называется нормальным уравнением плоскости в векторной форме. Зная координаты векторов
 
Уравнение (12.9) называется нормальным уравнением плоскости в координатной форме.
Отметим, что общее уравнение плоскости (12.4) можно привести к нормальному уравнению (12.9) так, как это делалось для уравнения прямой на плоскости. А именно: умножить обе части уравнения (12.4) на нормирующий множитель 
Плоскость и её основные задачи
Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей
Пусть заданы две плоскости 
 
Под углом между плоскостями  





 
Для нахождения острого угла следует взять модуль правой части.
Если плоскости 

 
т. е. 

Если плоскости 


Это и есть условие параллельности двух плоскостей 
Расстояние от точки до плоскости
Пусть задана точка 

 
Вывод этой формулы такой же, как вывод формулы расстояния от точки 
Расстояние d от точки 



 
А так как точка 
 
Поэтому 


 
Уравнения прямой в пространстве
Векторное уравнение прямой
Положение прямой в пространстве вполне определено, если задать какую-либо точку 







 
Вектор 


Уравнение (12.10) можно записать в виде
 
Полученное уравнение называется векторным уравнением прямой.
Параметрические уравнения прямой
Замечая, что 
 
Отсюда следуют равенства:
 
Они называются параметрическими уравнениями прямой в пространстве.
Канонические уравнения прямой
Пусть 






 
Уравнения (12.13) называются каноническими уравнениями прямой в пространстве.
Замечания:
1) Уравнения (12.13) можно было бы получить сразу из параметрических уравнений прямой (12.12), исключив параметр t. Из уравнений (12.12) находим
 
2) Обращение в нуль одного из знаменателей уравнений (12.13) означает обращение в нуль соответствующего числителя.
Например, уравнения 


Уравнение прямой в пространстве, проходящей через две точки
Пусть прямая L проходит через точки 

 
(см. рис. 76). Следовательно,
 
Поскольку прямая проходит через точку 
 
Общие уравнения прямой
Прямую в пространстве можно задать как линию пересечения двух непараллельных плоскостей. Рассмотрим систему уравнений
 
Каждое из уравнений этой системы определяет плоскость. Если плоскости не параллельны (координаты векторов 

От общих уравнений (12.15) можно перейти к каноническим уравнениям (12.13). Координаты точки 
Так как прямая L перпендикулярна векторам 

 
Замечание:
Канонические уравнения прямой легко получить, взяв две какие-либо точки на ней и применив уравнения (12.14).
Пример:
Написать канонические уравнения прямой L, заданной уравнениями
 
Решение:
Положим z = 0 и решим систему 




Прямая линия в пространстве
Угол между прямыми. Условия параллельности и перпендикулярности прямых
Пусть прямые 
 
 
Под углом между этими прямыми понимают угол между направляющими векторами
 
 
Поэтому, по известной формуле для косинуса угла между векторами, получаем 
 
Для нахождения острого угла между прямыми 
Если прямые 

Если прямые 

Пример:
Найти угол между прямыми
 
Решение:
Очевидно, 



Условие, при котором две прямые лежат в одной плоскости
Пусть прямые 
 
Их направляющие векторы соответственно 
Прямая 





 
Прямые 

 

 
При выполнении этого условия прямые 


Прямая и плоскость в пространстве
Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости
Пусть плоскость Q задана уравнением Ах + By + Cz + D = 0, а прямая L уравнениями 
Углом между прямой и плоскостью называется любой из двух смежных углов, образованных прямой и ее проекцией на плоскость. Обозначим через 







 
Если прямая L параллельна плоскости Q, то векторы 

 
является условием параллельности прямой и плоскости.
 
Если прямая L перпендикулярна плоскости Q, то векторы 
 
являются условиями перпендикулярности прямой и плоскости.
Пересечение прямой с плоскостью. Условие принадлежности прямой плоскости
Пусть требуется найти точку пересечения прямой
 
 
Для этого надо решить систему уравнений (12.18) и (12.19). Проще всего это сделать, записав уравнения прямой (12.18) в параметрическом виде:
 
Подставляя эти выражения для х, у и z в уравнение плоскости (12.19), получаем уравнение 
 
Если прямая L не параллельна плоскости, т. е. если 
 
Подставляя найденное значение t в параметрические уравнения прямой, найдем координаты точки пересечения прямой с плоскостью. Рассмотрим теперь случай, когда 
а) если 

б) если 

 
является условием принадлежности прямой плоскости.
Цилиндрические поверхности
Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую К, называется цилиндрической поверхностью или цилиндром. При этом кривая К называется направляющей цилиндра, а прямая L — его образующей (см. рис. 83).
Будем рассматривать цилиндрические поверхности, направляющие которых лежат в одной из координатных плоскостей, а образующие параллельны координатной оси, перпендикулярной этой плоскости.
Пусть в плоскости Оху лежит некоторая линия К, уравнение которой
 
Построим цилиндр с образующими параллельными оси Oz и направляющей К.
Теорема:
Уравнение цилиндра, образующие которого параллельны оси Oz, имеет вид (12.21), т. е. не содержит координаты z.
 
Возьмем на цилиндре любую точку М(х; у; z) (см. рис. 84). Она лежит на какой-то образующей. Пусть N — точка пересечения этой образующей с плоскостью Оху. Следовательно, точка N лежит на кривой K и ее координаты удовлетворяют уравнению (12.21).
Но точка М имеет такие же абсциссу х и ординату у, что и точка N. Следовательно, уравнению (12.21) удовлетворяют и координаты точки М(х; у; z), так как оно не содержит z. И так как М — это любая точка цилиндра, то уравнение (12.21) и будет уравнением этого цилиндра.
Теперь ясно, что F(x; z) = 0 есть уравнение цилиндра с образующими, параллельными оси Оу, a F(y; z) = 0 — с образующими, параллельными оси Ох. Название цилиндра определяется названием направляющей. Если направляющей служит эллипс.
 
в плоскости Оху, то соответствующая цилиндрическая поверхность называется эллиптическим цилиндром (см. рис. 85).
 
Частным случаем эллиптического цилиндра является круговой цилиндр, его уравнение 

 
определяет в пространстве гиперболический цилиндр (см. рис.87).
Все эти поверхности называются цилиндрами второго порядка, так как их уравнения есть уравнения второй степени относительно текущих координат х, у и z.
Поверхности вращения. Конические поверхности
Поверхность, образованная вращением некоторой плоской кривой вокруг оси, лежащей в ее плоскости, называется поверхностью вращения. Пусть некоторая кривая L лежит в плоскости Oyz. Уравнения этой кривой запишутся в виде
 
Найдем уравнение поверхности, образованной вращением кривой L вокруг оси Oz.
Возьмем на поверхности произвольную точку M(x;y;z) (см. рис. 88). Проведем через точку М плоскость, перпендикулярную оси Oz, и обозначим точки пересечения ее с осью Oz и кривой L соответственно через 







 
Так как точка N лежит на кривой L, то ее координаты удовлетворяют уравнению (12.22). Стало быть, 

 
Уравнение (12.23) — искомое уравнение поверхности вращения, ему удовлетворяют координаты любой точки М этой поверхности и не удовлетворяют координаты точек, не лежащих на поверхности вращения.
Как видно, уравнение (12.23) получается из (12.22) простой заменой у на 
Понятно, что если кривая (12.22) вращается вокруг оси Оу, то уравнение поверхности вращения имеет вид
 
если кривая лежит в плоскости Оху (z = 0) и ее уравнение F(x;у) = 0, то уравнение поверхности вращения, образованной вращением кривой вокруг оси Ох, есть 
Так, например, вращая прямую у = z вокруг оси Oz (см. рис. 89), получим поверхность вращения (ее уравнение 

Поверхность, образованная прямыми линиями, проходящими через данную точку Р и пересекающими данную плоскую линию L (не проходящую через Р), называется конической поверхностью или конусом. При этом линия L называется направляющей конуса, точка Р — ее вершиной, а прямая, описывающая поверхность, называется образующей.
 
Пусть направляющая L задана уравнениями
 
а точка 

 
Канонические уравнения образующих, проходящих через точки Р и N, имеют вид
 
Исключая 
Пример:
Составить уравнение конуса с вершиной в точке О(0; 0; 0), если направляющей служит эллипс 

Решение:
Пусть М(х; у; z) — любая точка конуса. Канонические уравнения образующих, проходящих через точки (0; 0; 0) и точку 


 
(точка 




 
Это и есть искомое уравнение конуса.
Канонические уравнения поверхностей второго порядка
По заданному уравнению поверхности второго порядка (т. е. поверхности, уравнение которой в прямоугольной системе координат является алгебраическим уравнением второй степени) будем определять ее геометрический вид. Для этого применим так называемый метод сечений: исследование вида поверхности будем производить при помощи изучения линий пересечения данной поверхности с координатными плоскостями или плоскостями, им параллельными.
Эллипсоид
Исследуем поверхность, заданную уравнением
 
Рассмотрим сечения поверхности (12.28) с плоскостями, параллельными плоскости хОу. Уравнения таких плоскостей: z = h, где h — любое число.
Линия, получаемая в сечении, определяется двумя уравнениями
 
Исследуем уравнения (12.29): а) Если 
б) Если 
в) Если 
 
Как видно, линия пересечения есть эллипс с полуосями (см. рис. 91)
 
При этом чем меньше 



 
Аналогичные результаты получим, если рассмотрим сечения поверхности (12.28) плоскостями х = h и у = h.
Таким образом, рассмотренные сечения позволяют изобразить поверхность (12.28) как замкнутую овальную поверхность. Поверхность (12.28) называется эллипсоидом. Величины а, b и с называются полуосями эллипсоида. Если все они различны, то эллипсоид называется трехосным; если какие-либо две полуоси равны, трехосный эллипсоид превращается в эллипсоид вращения; если а = b = с, то — в сферу 
Однополостный гиперболоид
Исследуем поверхность, заданную уравнением
 
Пересекая поверхность (12.30) плоскостью z = h, получим линию пересечения, уравнения которой имеют вид
 
Как видно, этой линией является эллипс с полуосями
 
Полуоси 

 
Если пересекать поверхность (12.30) плоскостями х = h или у = h, то в сечении получим гиперболы. Найдем, например, линию пересечения поверхности (12.30) с плоскостью Oyz, уравнение которой х = 0. Эта линия пересечения описывается уравнениями
 
Как видно, эта линия есть гипербола (см. рис. 92).
Анализ этих сечений показывает, что поверхность, определяемая уравнением (12.30), имеет форму бесконечной расширяющейся трубки. Поверхность (12.30) называется однополостным гиперболоидом.
Замечание: можно доказать, что через любую точку гиперболоида (12.30) проходят две прямые, лежащие на нем.
Двухполостный гиперболоид
Пусть поверхность задана уравнением
 
Если поверхность (12.31) пересечь плоскостями z = h, то линия пересечения определяется уравнениями
 
Отсюда следует, что:
а) если |h| с, то уравнения (12.32) могут быть переписаны так
 
Эти уравнения определяют эллипс, полуоси которого возрастают с ростом |h|.
Пересекая поверхность (12.31) координатными плоскостями Oyz (х = 0) и Oxz (у = 0), получим в сечении гиперболы, уравнения которых соответственно имеют вид
 
У обеих гипербол действительной осью является ось Oz. Метод сечения позволяет изобразить поверхность (см. рис. 93), определяемую уравнением (12.31), как поверхность, состоящую из двух полостей, имеющих форму выпуклых неограниченных чаш. Поверхность (12.31) называется двухполостным гиперболоидом.
 
Эллиптический параболоид
Исследуем поверхность, заданную уравнением
 
где р > 0, q > 0. Рассечем поверхность (12.33) плоскостями z = h. В сечении получим линию, уравнения которой есть
 
Если h 0, то в сечении имеем эллипс, уравнение которого имеет вид
 
Его полуоси возрастают с ростом h.
При пересечении поверхности (12.33) координатными плоскостями Oxz и Oyz получатся соответственно параболы 
Гиперболический параболоид
Исследуем поверхность, определяемую уравнением
 
где р > 0, q > 0. Рассечем поверхность (12.34) плоскостями z = h. Получим кривую
 
которая при всех значениях 
ветви которых направлены вверх. При у=0 в сечении получается парабола
 
с вершиной в начале координат и осью симметрии Oz.
Пересекая поверхность (12.34) плоскостями х = h, получим параболы 
Анализ линии пересечения позволяет определить вид поверхности: она имеет вид седла (см. рис. 95). Поверхность (12.34) называется гиперболическим параболоидом.
 
Конус второго порядка
Исследуем уравнение поверхности
 
Пересечем поверхность (12.35) плоскостями z = h. Линия пересечения 

Полуоси этих эллипсов будут возрастать при возрастании |h|. Рассечем поверхность (12.35) плоскостью Oyz (х = 0). Получится 
линия
 
распадающаяся на две пересекающиеся прямые
 
При пересечении поверхности (12.35) плоскостью у = 0 получим линию
 
также распадающуюся на две пересекающиеся прямые
 
Поверхность, определяемая уравнением (12.35), называется конусом второго порядка, имеет вид, изображенный на рисунке 96. Поверхности, составленные из прямых линий, называются линейчатыми. Такими поверхностями являются цилиндрические, конические поверхности, а также однополостный гиперболоид и гиперболический параболоид.
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
 



















































Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Решить треугольник Онлайн по координатам
1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;
2) система линейных неравенств, определяющих треугольник;
2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;
3) внутренние углы по теореме косинусов;
4) площадь треугольника;
5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;
10) параметры вписанной и описанной окружностей и их уравнения.
Внимание! Этот сервис не работает в браузере IE (Internet Explorer).
Запишите координаты вершин треугольника и нажмите кнопку.
| A ( ; ), B ( ; ), C ( ; ) | Примечание: дробные числа записывайте Округлять до -го знака после запятой. | ||































































































































































































































































































































 перпендикулярен оси Oz. Следовательно, плоскость параллельна осиOz; если В = 0 — параллельна оси Оу, А = 0 — параллельна оси Ох.
перпендикулярен оси Oz. Следовательно, плоскость параллельна осиOz; если В = 0 — параллельна оси Оу, А = 0 — параллельна оси Ох. Плоскость параллельна плоскостиОху. Аналогично, уравнениям Ах + D = 0 и By + D = 0 отвечают плоскости, соответственно параллельные плоскостям Oyz и Oxz.
Плоскость параллельна плоскостиОху. Аналогично, уравнениям Ах + D = 0 и By + D = 0 отвечают плоскости, соответственно параллельные плоскостям Oyz и Oxz.





























































































