Геометрия | 10 — 11 классы
Даны векторы a = 2i — 3j + k и b = 4i — 2k, где i, j, k единичные взаимно перпендикулярные векторы(орты).
A * B = (2i — 3j + k) * (4i — 2k) = 8i ^ 2 — 4ki — 12ji + 6jk + 4ki — 2k ^ 2.
- Даны векторы а (2 ; 5) и в ( — 6 ; у)?
- Помогите, пожалуйста какой гугл образует единичные векотры векот а и b если известно что векторы a + 2b и 5a — 4b взаимно перпендикулярны?
- Какой угол образуют единичные векторы a и b, если известно, что векторы а + 2b и 5а — 4b взаимно перпендикулярны?
- Помогите пожалуйста ) Дан вектор a(вектор)?
- Вычислите угол между векторами а = 3m + 2k?
- Вектор а(4 ; 2) и вектор в(х ; — 4) Найти х, что бы векторы были перпендикулярны?
- Дан куб abcda1b1c1d1?
- Даны векторы a( 0?
- Докажите, что векторы а(5 ; — 3 ; 4) и b(1 ; 3 ; 1) взаимно перпендикулярны?
- Даны взаимно перпендикулярные и прямая а плоскость Сколько прямых можно провести так, из данной точки плоскости a так, чтобы они были перпендикулярны прямой а и лежали в плоскости а ?
- Даны векторы: a (5,2,-1) и b = 3 j -4 k . Найти модуль вектора 2 a + b. Найти модуль вектора 2 a + b
- Векторное произведение векторов онлайн
- Предупреждение
- Векторное произведение векторов
- Геометрические свойства векторного произведения векторов
- Векторное произведение векторов в декартовых координатах
- Векторное произведение векторов на примерах
Даны векторы а (2 ; 5) и в ( — 6 ; у)?
Даны векторы а (2 ; 5) и в ( — 6 ; у).
При каком значении у эти векторы перпендикулярные?
Помогите, пожалуйста какой гугл образует единичные векотры векот а и b если известно что векторы a + 2b и 5a — 4b взаимно перпендикулярны?
Помогите, пожалуйста какой гугл образует единичные векотры векот а и b если известно что векторы a + 2b и 5a — 4b взаимно перпендикулярны?
Какой угол образуют единичные векторы a и b, если известно, что векторы а + 2b и 5а — 4b взаимно перпендикулярны?
Какой угол образуют единичные векторы a и b, если известно, что векторы а + 2b и 5а — 4b взаимно перпендикулярны?
Помогите пожалуйста ) Дан вектор a(вектор)?
Помогите пожалуйста ) Дан вектор a(вектор).
Постройте единичный вектор b(вектор) так, чтобы выполнялось равенство a * b = 1.
Всегда ли существует такой вектор b?
Вычислите угол между векторами а = 3m + 2k?
Вычислите угол между векторами а = 3m + 2k.
В = m + 5k, где m и k — единичные взаимно перпендикулярные векторы.
Вектор а(4 ; 2) и вектор в(х ; — 4) Найти х, что бы векторы были перпендикулярны?
Вектор а(4 ; 2) и вектор в(х ; — 4) Найти х, что бы векторы были перпендикулярны.
Дан куб abcda1b1c1d1?
Дан куб abcda1b1c1d1.
Перпендикулярны ли векторы ab и сс1.
Даны векторы a( 0?
Даны векторы a( 0.
5 ) u c( — 1 ; — 4) какие из них взаимно перпендикулярны .
Данные векторы a, b, c, — ненулевые , нужны найти скалярное произведение и узнать какие из них взаимно перпендикулярны.
Докажите, что векторы а(5 ; — 3 ; 4) и b(1 ; 3 ; 1) взаимно перпендикулярны?
Докажите, что векторы а(5 ; — 3 ; 4) и b(1 ; 3 ; 1) взаимно перпендикулярны.
Даны взаимно перпендикулярные и прямая а плоскость Сколько прямых можно провести так, из данной точки плоскости a так, чтобы они были перпендикулярны прямой а и лежали в плоскости а ?
Даны взаимно перпендикулярные и прямая а плоскость Сколько прямых можно провести так, из данной точки плоскости a так, чтобы они были перпендикулярны прямой а и лежали в плоскости а ?
Вы находитесь на странице вопроса Даны векторы a = 2i — 3j + k и b = 4i — 2k, где i, j, k единичные взаимно перпендикулярные векторы(орты)? из категории Геометрия. Уровень сложности вопроса рассчитан на учащихся 10 — 11 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.
По теореме о неравенстве треугольника треугольник существует, если его большая сторона меньше суммы двух других сторон. Это неравенство выполняется в нашем условии : АС.
Не лежат. Потому что отрезок AC = 14, а поскольку AB и BC его составляющие то — AB + BC = AC, тоесть 9 + 6 = 15см, а должно быть 14см.
Т. к. Касается оси Ох, то радиус равен ординате точки А. Т. е. R = 3 (х — 4)² + (у — 3)² = 3² (х — 4)² + (у — 3)² = 9.
Даны векторы: a (5,2,-1) и b = 3 j -4 k . Найти модуль вектора 2 a + b. Найти модуль вектора 2 a + b
ОТВЕТ: модуль = V185
——————————————————
РЕШЕНИЕ:
Найдем сумму векторов:
2a + b = (10i + 4j — 2k) + (3j — 4k) =
=10i + 7j — 6k
Возведем сумму в квадрат:
(2a + b)^2 = (10i + 7j — 6k)^2 =
= (10i)^2 + (7j)^2 + (6k)^2 =
= 100 + 49 + 36 = 185
Значит, модуль равен квадратному корню из 185 = V185
Векторное произведение векторов онлайн
Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Векторное произведение векторов
Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.
Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.
Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.
Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.
Определение 2 можно формулировать и по другому.
Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).
Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.
Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.
Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.
Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.
Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:
- длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|[ab]|=|a||b|sinφ; (1) - вектор с ортогонален к каждому из векторов a и b;
- вектор c направлен так, что тройка abc является правой.
Векторное произведение векторов обладает следующими свойствами:
- [ab]=−[ba] ( антиперестановочность сомножителей);
- [(λa)b]=λ[ab] ( сочетательность относительно числового множителя);
- [(a+b)c]=[ac]+[bc] ( распределительность относительно суммы векторов);
- [aa]=0 для любого вектора a.
Геометрические свойства векторного произведения векторов
Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.
Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.
Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).
Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.
Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.
Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:
S=|[ab]|=|a||b|sinφ. | (2) |
Векторное произведение векторов в декартовых координатах
Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами
a=<x1, y1, z1>, b=<x2, y2, z2>. |
Тогда векторное произведение этих векторов имеет вид:
[ab]=<y1z2—y2z1, z1x2−z2x1, x1y2−x2y1>. | (3) |
Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:
Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).
Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:
(4) |
Из последнего равенства и соотношений (4), получим:
которая эквивалентна равенству (3).
Векторное произведение векторов на примерах
Пример 1. Найти векторное произведение векторов [ab], где
, . |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор:
. |
Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: , конечная точка вектора a: , вектор b имеет вид .
Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:
. |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор: