Даны два n мерных вектора найти сумму этих векторов

Пример программы суммирования векторов

Ввод массива Паскаля

Для того чтобы ввести значения элементов массива, необходимо последовательно изменять значение индекса, начиная с первого до последнего, и вводить соответствующий элемент. Для реализации этих действий удобно использовать цикл с заданным числом повторений, т.е. простой арифметический цикл, где параметром цикла будет выступать переменная – индекс массива Паскаля. Значения элементов могут быть введены с клавиатуры или определены с помощью оператора присваивания.

Begin

For i:=1 to 10 do

2. Способы заполнения массивов:

1 способ program pr1; var a: array [1..5] of integer; i:integer; begin writeln (‘Первый способ’); a[1]:=6; a[2]:=9; a[3]:=5; a[4]:=8; a[5]:=6; for i:=1 to 5 do writeln (a [i]); readln; end.2 способ Program pr2; Var A: array [1..5] of real; i:integer; begin writeln (‘Второй способ’); For i:=1 to 5 do Readln (a [i]); Readln; end.

Вывод массива Паскаля

Вывод массива в Паскале осуществляется также поэлементно, в цикле, где параметром выступает индекс массива, принимая последовательно все значения от первого до последнего.

Пример фрагмента программы вывода массива Паскаля

Var
A: array [1..10] of integer;
I : byte ;
Begin
For i :=1 to 10 do
Write ( a [ i ],’ ‘);

Вывод можно осуществить и в столбик с указанием соответствующего индекса. Но в таком случае нужно учитывать, что при большой размерности массива все элементы могут не поместиться на экране и будет происходить скроллинг, т.е. при заполнении всех строк экрана будет печататься очередной элемент, а верхний смещаться за пределы экрана.

Пример программы вывода массива Паскаля в столбик

На экране мы увидим, к примеру, следующие значения:

Пример решения задачи с использованием массивов Паскаля

Задача: даны два n -мерных вектора. Найти сумму этих векторов.

  • Входными данными в этой задаче будут являться два одномерных массива. Размер этих массивов может быть произвольным, но определенным. Т.е. мы можем описать заведомо большой массив, а в программе определить, сколько элементов реально будет использоваться. Элементы этих массивов могут быть целочисленными. Тогда описание будет выглядеть следующим образом:

var a , b : array [1..100] of integer ;

  • Выходными данными будут элементы результирующего массива, назовем его c . Тип результирующего массива также должен быть целочисленным.
  • Кроме трех массивов нам потребуется переменная – параметр цикла и индекс массива, назовем ее i , а также переменная n для определения количества элементов в каждом массиве.

Ход решения задачи:

  • определим количество элементов (размерность) массивов, введем значение n ;
  • введем массив a ;
  • введем массив b ;
  • в цикле, перебирая значения индекса i от 1 до n , вычислим последовательно значения элементов массива c по формуле:

c [ i ]= a [ i ]+ b [ i ];

  • выведем на экран полученный массив.

Пример программы суммирования векторов

Program summa;
Var
a, b, c: array [1..100] of integer;
I, n: byte;
Begin
Write (‘введите размерность массивов:’);
Readln(n);
For i:=1 to n do
Readln (a[i]);
For i:=1 to n do
Readln (b[i]);
For i:=1 to n do
C[i]:=a[i]+b[i];
For i:=1 to n do
write (c[i],’ ‘);
end.

Видео:Вычитание векторов. 9 класс.Скачать

Вычитание векторов. 9 класс.

Операции над n-мерными векторами: сложение, умножение, свойства

В статьях ранее мы рассматривали понятие вектора как элемента плоскости или пространства, т.е. геометрического объекта, имеющего конкретные очертания. Однако также возможно взглянуть на понятие с алгебраической точки зрения, когда вектор — уже не отрезок с заданным направлением, а упорядоченный комплекс чисел с определенными свойствами.

n -вектор – упорядоченный набор n действительных чисел.

Записывается в виде строки a = ( a 1 , a 2 , . . . , a n ) или столбца a = a 1 a 2 ⋮ a n , где

a i – координаты n-вектора, обозначаемые латинскими буквами и записываемые в скобках.

Размерность n -вектора – это количество его координат. Например, задан n -мерный вектор b → с координатами (2, -5, 3, 9). Заданный вектор является четырёхмерным.

Равные n -векторы – n -векторы, имеющие одну и ту же размерность, а также равенство одноименных координат.

Нулевой вектор – вектор, у которого все координаты равны нулю: 0 = ( 0 , 0 , . . , 0 )

Противоположные векторы – векторы с координатами, равными по модулю, но противоположными по знаку. Например,

a = ( a 1 , a 2 , . . . , a n )

— a = ( — a 1 , — a 2 , . . . , — a n )

Над n -мерными векторами возможно проведение операций сложения и умножения на число.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Сложение n-векторов

Результатом сложения двух n -мерных векторов будет вектор, координаты которого являются суммой соответствующих координат заданных векторов.

Операции сложения подлежат векторы одинаковой размерности.

Исходные данные: a = ( a 1 , a 2 , . . . , a n ) и a = ( b 1 , b 2 , . . . , b n ) .

Результатом будет вектор a + b = ( a 1 + b 1 , a 2 + b 2 , . . . , a n + b n ) .

Операция вычитания отдельно не рассматривается, поскольку по сути разностью векторов a и b является сумма векторов а и – b .

Видео:Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)Скачать

Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)

Умножение n-вектора на число

Результатом умножения заданного вектора на действительное или комплексное число будет вектор, каждая из координат которого определяется умножением исходной координаты на заданное число.

Исходные данные: a = ( a 1 , a 2 , . . . , a n ) и число λ .

Результатом произведения будет:

λ · a = ( λ · a 1 , λ · a 2 , . . . , λ · a n )

Множество всех n -векторов с производимыми действиями умножения на число и сложения составляют линейное пространство.

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Операции над 2-мерными и 3-мерными векторами

Операции над 2-мерными и 3-мерными векторами полностью сопоставимы с аналогичными операциями над векторами-геометрическими объектами. По сути координаты двухмерных и трехмерных векторов являются координатами вектора на плоскости или в пространстве в прямоугольной системе координат.

Видео:Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Свойства операций над n-мерными векторами

Исходные данные: векторы a = ( a 1 , a 2 , . . . , a n ) , b = ( b 1 , b 2 , . . . , b n ) , c = ( c 1 , c 2 , . . . , c n ) и действительные или комплексные числа λ , μ .

  1. Свойство коммутативности: a + b = b + a .
  2. Свойство ассоциативности: ( a + b ) + c = a + ( b + c ) .
  3. Свойство использования нейтрального элемента по сложению (нулевой вектор): a + 0 = a .
  4. Свойство использования нейтрального элемента по умножению (число, равное 1): 1 · а = а

Любой ненулевой вектор а имеет противоположный вектор — а и верным является равенство:

Сочетательное свойство умножения: ( λ · μ ) · a = λ · ( μ · a ) .

Первое распределительное свойство: ( λ + μ ) · a = λ · a + μ · a .

Второе распределительное свойство: λ · ( a + b ) = λ · a + λ · b .

Рассмотри некоторые примеры по теме.

Исходные данные: векторы a = ( 1 , 2 , 7 , 0 ) , b = ( 1 2 , — 1 , ln 5 , 2 . 3 )

Необходимо найти сумму и разность векторов.

Решение

Заданные вектора имеют одинаковую размерность, следовательно, операция сложения выполнима. Для этого найдем сумму координат векторов:

a + b = ( 1 , 2 , 7 , 0 ) + ( 1 2 , — 1 , ln 5 , 2 . 3 ) = = ( 1 + 1 2 , 2 + ( — 1 ) , 7 + ln 5 , 0 + 2 . 3 ) = = ( 3 2 , 2 — 1 , 7 + ln 5 , 2 . 3 )

Разницей исходных векторов будет являться сумма векторов a и b · ( — 1 ) :

a — b = a + ( — 1 ) · b = ( 1 , 2 , 7 , 0 ) + ( — 1 ) · ( 1 2 , — 1 , ln 5 , 2 . 3 )

Выполним умножение вектора на число:

a — b = ( 1 , 2 , 7 , 0 ) + ( — 1 ) · ( 1 2 , — 1 , ln 5 , 2 . 3 ) = = ( 1 , 2 , 7 , 0 ) + ( ( — 1 ) · 1 2 , ( — 1 ) · ( — 1 ) , ( — 1 ) · ln 5 , ( — 1 ) · 2 . 3 ) = = ( 1 , 2 , 7 , 0 ) + ( — 1 2 , 1 , ln 1 5 , — 2 . 3 )

И совершим действие сложения:

a — b = ( 1 , 2 , 7 , 0 ) + ( — 1 2 , 1 , ln 1 5 , — 2 . 3 ) = = ( 1 + ( — 1 2 ) , 2 + 1 , 7 + ln 1 5 , 0 + ( — 2 . 3 ) ) = = ( 1 2 , 2 + 1 , 7 + ln 1 5 , — 2 . 3 )

Ответ:

a + b = ( 3 2 , 2 — 1 , 7 + ln 1 5 , 2 . 3 ) a — b = ( 1 2 , 2 + 1 , 7 + ln 1 5 , — 2 . 3 )

Исходные данные: векторы a = ( 1 , 2 , 7 , 0 ) , b = ( 1 2 , — 1 , ln 5 , 2 . 3 )

Необходимо найти вектор: a — 2 · ( b + 3 · a )

Решение

Упростим выражение, опираясь на свойства операций над векторами:

a — 2 · ( b + 3 · a ) = a — 2 · b — 6 · a = — 5 · a + ( — 2 ) · b

Определим координаты полученного вектора:

— 5 · a + ( — 2 ) · b = = — 5 · ( 1 , 2 , 7 , 0 ) + ( — 2 ) ( 1 2 , — 1 , ln 5 , 2 . 3 ) = = ( ( — 5 ) · 1 , ( — 5 ) · 2 , ( — 5 ) · 7 , ( — 5 ) · 0 ) + + ( ( — 2 ) · 1 2 , ( — 2 ) · ( — 1 ) , ( — 2 ) · ln 5 , ( — 2 ) · 2 . 3 ) = = ( — 5 , — 5 2 , — 35 , 0 ) + ( — 1 , 2 , ln 1 25 , — 4 . 6 ) = = ( — 5 + ( — 1 ) , — 5 2 + 2 , — 35 + ln 1 25 , 0 + ( — 4 . 6 ) ) = = ( — 6 , — 5 2 + 2 , — 35 + ln 1 25 , — 4 . 6 )

Ответ:

a — 2 · ( b + 3 · a ) = ( — 6 , — 5 2 + 2 , — 35 + ln 1 25 , — 4 . 6 )

Исходные данные: векторы с = 1 2 — 3 , d = 0 0 3 , e = — 1 — 1 1

Необходимо определить координаты вектора: c + d + 2 e

Решение

Выполним операцию умножения вектора е на число 2, а затем найдем сумму:

c + d + 2 · e = 1 2 — 3 + 0 0 3 + 2 · — 1 — 1 1 = = 1 2 — 3 + 0 0 3 + 2 · ( — 1 ) 2 · ( — 1 ) 2 · 1 = = 1 2 — 3 + 0 0 3 + — 2 — 2 2 = = 1 + 0 + ( — 2 ) 2 + 0 + ( — 2 ) — 3 + 3 + 2 = — 1 0 2

Ответ: c + d + 2 · e = — 1 0 2

Исходные данные: векторы a = ( 1 , 2 , 7 , 0 ) , b = ( 1 2 , — 1 , ln 5 , 2 . 3 ) , f = ( 4 , 11 , 21 )

Необходимо найти вектор: 3 · a + 2 · b — 7 · ( a + f )

Решение

Исходные векторы имеют разную размерность ( а и f ), поэтому выполнить необходимые операции не представляется возможным.

Ответ: невозможно выполнить указанные действия с заданными векторами.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Сложение и вычитание векторов

Видео:9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Формулы сложения и вычитания векторов

Формулы сложения и вычитания векторов для плоских задач

В случае плоской задачи сумму и разность векторов a = < ax ; ay > и b = < bx ; by > можно найти, воспользовавшись следующими формулами:

Формулы сложения и вычитания векторов для пространчтвенных задач

В случае пространственной задачи сумму и разность векторов a = < ax ; ay ; az > и b = < bx ; by ; bz > можно найти, воспользовавшись следующими формулами:

Формулы сложения и вычитания n -мерных векторов

В случае n -мерного пространства сумму и разность векторов a = < a 1 ; a 2 ; . ; an > и b = < b 1 ; b 2 ; . ; bn > можно найти, воспользовавшись следующими формулами:

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Примеры задач на сложение и вычитание векторов

Примеры плоских задач на сложение и вычитание векторов

Примеры пространственных задач на сложение и вычитание векторов

Примеры задач на сложение и вычитание векторов с размерностью большей 3

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

💡 Видео

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Сумма двух векторов. Правило треугольника. Законы сложения векторов. Правило параллелограмма.Скачать

Сумма двух векторов. Правило треугольника. Законы сложения векторов. Правило параллелограмма.

СУММА ВЕКТОРОВ правило треугольникаСкачать

СУММА ВЕКТОРОВ правило треугольника

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

8 класс, 45 урок, Сумма нескольких векторовСкачать

8 класс, 45 урок, Сумма нескольких векторов

10 класс, 41 урок, Сумма нескольких векторовСкачать

10 класс, 41 урок, Сумма нескольких векторов

Векторное произведение векторов | Высшая математикаСкачать

Векторное произведение векторов | Высшая математика
Поделиться или сохранить к себе: