Теорема 1 От любой точки ( K ) можно отложить вектор единственный ( overrightarrow ) .
Существование: Имеем два следующих случая:
Здесь получаем, что искомый нами вектор совпадает с вектором ( overrightarrow ) .
Из данного выше построения сразу же будет следовать единственность данного вектора.
- Сумма векторов. Сложение векторов. Правило треугольника
- Разность векторов. Вычитание векторов
- Умножение вектора на число
- Сумма и разность векторов
- Сумма векторов
- Формула сложения векторов
- Свойства сложения векторов
- Разность векторов
- Формула вычитания векторов
- Примеры задач
- Геометрия
- Укажи вектор, равный сумме двух векторов
- 📹 Видео
Видео:10 класс, 41 урок, Сумма нескольких векторовСкачать
Сумма векторов. Сложение векторов. Правило треугольника
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
Суммой нескольких векторов ( vec ) , ( vec ) , ( vec,;ldots ) называется вектор ( vec ) , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
( vec + vec = left( <+ , + , + > right) )
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора ( overrightarrow ) выполняется равенство
Для произвольных точек ( A, B и C ) справедливо следующее равенство
Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Разность векторов. Вычитание векторов
Разность двух одинаковых векторов равна нулевому вектору :
( vec — vec = vec )
Длина нулевого вектора равна нулю:
( left| vec right| = 0 )
Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec — vec = left( <- , — , — > right) )
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Умножение вектора на число
Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .
Определение Произведением вектора ( overrightarrow ) на действительное число ( k ) называется вектор ( overrightarrow ) удовлетворяющий следующим условиям:
Длина вектора ( overrightarrow ) равна ( left|overrightarrowright|=left|kright||overrightarrow| ) ;
Векторы ( overrightarrow ) и ( overrightarrow ) сонаправлены, при ( kge 0 ) и противоположно направлены, если ( kle 0 )
Обозначение: ( overrightarrow=koverrightarrow ) .
Видео:Вычитание векторов. 9 класс.Скачать
Сумма и разность векторов
В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.
Видео:Сложение векторов. 9 класс.Скачать
Сумма векторов
Сложение векторов выполняется по правилу треугольника.
Геометрическая интерпретация:
Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .
Для сложения векторов также используется правило параллелограмма.
Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.
Формула сложения векторов
Элементы вектора c равняются попарной сумме соответствующих элементов a и b .
<table data-id="250" data-view-id="250_55602" data-title="Формулы сложения векторов" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value=" a + b = <ax + bx; ay + by> » data-order=» a + b = <ax + bx; ay + by> » style=»min-width:55.0847%; width:55.0847%;»> a + b = <ax + bx; ay + by>
<td data-cell-id="B2" data-x="1" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" a + b = <ax + bx; ay + by; az + bz> » data-order=» a + b = <ax + bx; ay + by; az + bz> «> a + b = <ax + bx; ay + by; az + bz>
<td data-cell-id="B3" data-x="1" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" a + b = <a1 + b1; a2 + b2; . an + bn> » data-order=» a + b = <a1 + b1; a2 + b2; . an + bn> «> a + b = <a1 + b1; a2 + b2; . an + bn>
Свойства сложения векторов
1. Коммутативность: a + b = b + a
2. Ассоциативность: ( a + b ) + c = a + ( b + c )
3. Прибавление к нулю: a + 0 = a
4. Сумма противоположных векторов: a + (- a ) = 0
Примечание: Вектор – a коллинеарен и равен по длине a , но имеет противоположное направление, из-за чего называется противоположным.
Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать
Разность векторов
Для вычитания векторов также применяется правило треугольника.
Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:
Формула вычитания векторов
Элементы вектора c равны попарной разности соответствующих элементов a и b .
<table data-id="251" data-view-id="251_83403" data-title="Формулы вычитания векторов" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value=" a — b = <ax — bx; ay — by> » data-order=» a — b = <ax — bx; ay — by> » style=»min-width:55.0847%; width:55.0847%;»> a — b = <ax — bx; ay — by>
<td data-cell-id="B2" data-x="1" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" a — b = <ax — bx; ay — by; az — bz> » data-order=» a — b = <ax — bx; ay — by; az — bz> «> a — b = <ax — bx; ay — by; az — bz>
<td data-cell-id="B3" data-x="1" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" a — b = <a1 — b1; a2 — b2; . an — bn> » data-order=» a — b = <a1 — b1; a2 — b2; . an — bn> «> a — b = <a1 — b1; a2 — b2; . an — bn>
Видео:СУММА ВЕКТОРОВ правило треугольникаСкачать
Примеры задач
Задание 1
Вычислим сумму векторов и .
Задание 2
Найдем разность векторов и .
Видео:Координаты вектора. 9 класс.Скачать
Геометрия
УРОК: «СЛОЖЕНИЕ ВЕКТОРОВ»
Тема: Сложение векторов
Класс: 9 класс
Педагог: , заместитель директора по воспитательной работе, учитель математики и информатики.
Учреждение образования: МОУ Шуринская средняя общеобразовательная школа Кемеровской области
Город: Кемеровская область
Знать, как находится сумма двух и нескольких векторов, законы сложения векторов; какие векторы называются противоположными.
Уметь строить сумму данных векторов, пользуясь правилом треугольника и параллелограмма, применять правила при решении задач.
I. Организационный момент: объяснить цели урока
II. Проверка пройденного материала:
1. Верно ли утверждение:
Если = , то и коллинеарны
2. № 000 (б). Определите вид четырехугольника АВСD, если:
, а векторы и не коллинеарны. (трапеция)
В параллелограмме АВСD диагонали пересекаются в точке О. Равны ли векторы и
III. Объяснение нового материала
План объяснения
1. Противоположные векторы
Два вектора, имеющие равные модули и противоположные направления, называются противоположными.
Вектор, противоположный вектору , обозначается (- ) и (произносится «минус »).
На рисунке изображены противоположные векторы и , т. е. ½½=½ ½и . Если =, то = —
2. Правило треугольника
Если переместить тело из точки А в точку В, а потом из точки В в точку С (Рисунок1), то суммарное перемещение из А в С представляется вектором . Так складывают векторы и :
+ =
В рассмотренном случае конец первого вектора является началом второго вектора . В общем случае векторы и складываются следующим образом ( рисунок справа). Сначала откладывают от какой-либо точки А вектор = , а потом от точки В вектор=. Тогда вектор представляет сумму векторов и : + = + =
3. Сумма двух векторов.
Итак, суммой двух векторов называется вектор, построенный по правилу треугольника.
В частности, если вектор складывается с противоположным ему вектором (-), то в сумме получается нулевой вектор: + (-) = 0. Складывая векторы и по правилу треугольника, мы поступали так:
Выбирали точку А, откладывали от нее =, затем от точки В откладывали вектор = и получали вектор = +. Покажем, что полученный таким образом результат, т. е. сумма векторов и не зависит от выбора точки А. Для этого выберем какую-нибудь точку А1, отличную от точки А. По правилу треугольника построили векторы = и = .Требуется проверить, что векторы и АС равны. Действительно, т. к. = и =, то =, тогда АВВ1А1 — параллелограмм, отсюда АА1 = ВВ1. Аналогично из векторного равенства = вытекает, что = . Тогда т. к. два вектора и равны третьему вектору, то =. Следовательно, АСС1А1 — параллелограмм, отсюда =
При сложении векторов и имеют место следующие неравенства для модулей этих векторов:
½ + ½ £ ½ ½ + ½½ и ½ + ½³ ½½ ½ — ½½½ причем равенство ½ + ½=½½ ½ — ½½½ достигается только в случае противоположно направленных векторов и .
Эти неравенства вытекают из неравенства треугольника для любых точек А, В и С ( в том числе и лежащих на одной прямой).
Анимация двух векторов.
4. Сложение векторов
При сложении векторов, как и при сложении чисел, выполняются переместительный и сочетательный законы. Кроме этого вы познакомитесь с правилом, по которому можно построить сумму двух неколлинеарных векторов.
5. Переместительный закон сложения.
Теорема: (Переместительный закон сложения векторов или коммутативность сложения)
Для любых векторов и справедливо равенство: + = +
Доказательство: Рассмотрим сначала случай коллинеарных векторов и . Тогда либо , либо . Если , то отложим на прямой а от произвольной точки А вектор = , а затем от точки В отложим вектор = . Тогда по определению = + . Теперь на прямой b½½ а от произвольной точки А1 отложим вектор =, затем =. Тогда по определению = +. , т. к. ½½ = ½ + ½ = ½ ½ + ½½ и ½½ = ½ +½ = ½½ +½½. ½ ½ и½½ — скаляры, то
½ ½ + ½½=½½ +½½, поэтому ½½=½½.
Если , то отложим на прямой а от произвольной точки А вектор = , а затем от точки В отложим вектор = . Тогда по определению = + . Теперь на прямой b½½ а от произвольной точки А1 отложим вектор =, затем =. Тогда по определению = +. , т. к. ½½ = ½ + ½ =½ ½ ½ -½½½ и ½½ = ½ +½ = ½ ½½ -½ ½½. ½ ½ и½½ — скаляры, то
½ ½ ½ -½½ ½=½ ½½ -½ ½½, поэтому ½½=½½.
6. Правило параллелограмма
Раньше, чтобы получить сумму векторов и , мы пользовались правилом треугольника. В доказательстве предыдущей теоремы мы получили правило параллелограмма: Если два вектора не коллинеарны, то их сумма представляется диагональю построенного на них параллелограмма. Итак, чтобы сложить неколлинеарные векторы и , нужно отложить от произвольной точки О вектор = и = и построить параллелограмм ОАСВ. Тогда = +
Тренажер
Укажи вектор, равный сумме двух векторов
7.Сочетательный закон умножения
Операция сложения векторов, как и операция сложения чисел, обладает и сочетательным свойством.
Теорема: (Сочетательный закон сложения, или ассоциативность сложения).Для любых , и справедливо равенство: ( + )+ = + (+)
Доказательство: Отложим от точки А вектор = , а затем от точки В — вектор = и от точки С — вектор=. Т. к. по правилу треугольника + =+=
И + =+=, то ( + )+ = (+)+=+ =
И + (+) = +(+)=+=. Итак, ( + )+ = + (+)
Замечание: Сочетательный закон сложения векторов справедлив для любого числа векторов
Тренажер (отрабатываются навыки законов сложения)
Укажите недостающие значения в формулах.
8. Сумма нескольких векторов
Суммой нескольких векторов называется вектор, получающийся после ряда последовательных сложений: к первому вектору прибавляется второй, к полученному вектору прибавляется третий и т. д. Сумма векторов , , и обозначается так: ++ +. Из определения вытекает способ построения суммы нескольких векторов.
Построим, например, сумму ++ + векторов , , и. От произвольной точки О отложим вектор =, от точки А отложим вектор =, а затем от точки В — вектор =, наконец, от точки С — вектор =. Тогда, по определению, вектор — сумма векторов , , и или = ++ +.
Тренажер (показ анимации сложения пяти и семи векторов)
1. Два вектора, имеющие равные модули и противоположно направленные, называются противоположными.
2. Суммой двух векторов называется вектор, построенный по правилу треугольника.
3. Правилом треугольника называется следующее последовательное построение: сначала откладывают от произвольной точки А вектор =, а потом от точки В — вектор =. Тогда = +
4. Если вектор складывается с противоположным ему вектором, то в сумме получится нулевой вектор.
5. Теорема (Переместительный закон сложения): Для любых векторов и справедливо равенство: +=+
6. Правило параллелограмма: если два вектора не коллинеарны, то их сумма представляется диагональю построенного параллелограмма.
7. Теорема(Сочетательный закон сложения): Для любых векторов и справедливо равенство: ( +)+ = +(+ ).
8. Суммой нескольких векторов называется вектор, получающийся после ряда последовательных сложений: к первому вектору прибавляется второй, к полученному вектору прибавляется третий.
9. Способ построения суммы нескольких векторов называется правилом многоугольника.
10. Если начало первого вектора совпадает с концом последнего, то суммой таких векторов будет нулевой вектор.
IV. Закрепление полученных знаний:
1. Дан треугольник АВС. Выразите через векторы = и = вектор
А) —
Б) —
В) +
2. Векторы и отложены от точек А и А1, причем = =, ==. Как называется фигура АСС1А1?
а) =—
б) = —
в) =+
А) Вектор
Б) Вектор
В) Вектор
V. Подведение итогов.
VI. Задание на дом: п.79-81, №№ 000, 761, 762 (а, в,г, д)
📹 Видео
ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать
Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать
Скалярное произведение векторов. 9 класс.Скачать
Средняя линия треугольника и трапеции. 8 класс.Скачать
Геометрия 9 класс (Урок№2 - Сумма двух векторов. Законы сложения векторов.)Скачать
Угол между векторами. 9 класс.Скачать
Сложение векторов. Правило параллелограмма. 9 класс.Скачать
№799. Дана равнобедренная трапеция ABCD. Перпендикуляр, проведенный из вершины В к большему основаниСкачать
8 класс, 41 урок, Равентво векторовСкачать
умножение ВЕКТОРА на число + теорема о средней линии ТРАПЕЦИИСкачать
3 урок. Произведение вектора на число. Средняя линия трапеции | Геометрия. 9 классСкачать
№327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, нСкачать