Содержание:
Расстояние от точки до прямой:
Введем теперь понятие расстояния от точки до прямой. Пусть точка А не лежит на прямой b и отрезок АО — перпендикуляр, проведенный из точки А к прямой b (рис. 121, a).
Наклонной к прямой b называется отрезок AM, где М — произвольная точка прямой b, не совпадающая с точкой О (см. рис. 121, а). В прямоугольном треугольнике АОМ катет АО меньше гипотенузы AM. Таким образом, перпендикуляр, проведенный из точки к прямой, меньше любой наклонной, проведенной из той же точки к данной прямой.
- Определение расстояния от точки до прямой
- Расстояние между параллельными прямыми
- Правильная треугольная пирамида
- Равенство фигур
- Пример №1
- Пример №2
- Расстояние между двумя параллельными прямыми: определение и примеры нахождения
- Расстояние между двумя параллельными прямыми: определение
- Нахождение расстояния между параллельными прямыми
- Геометрия. 7 класс
- 🎥 Видео
Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать
Определение расстояния от точки до прямой
Определение. Расстоянием от точки до прямой называется длина перпендикуляра, проведенного из этой точки к прямой.
Расстояние от точки А до прямой b обозначается d(A, b) (читают следующим образом: «Расстояние от точки А до прямой b»).
Например, если в прямоугольном треугольнике ABC угол С прямой, то расстояние от вершины А до прямой ВС равно длине катета АС, а расстояние от вершины В до прямой АС равно длине катета ВС (рис. 121, б). Длина отрезка CF, являющегося высотой этого треугольника, есть расстояние от вершины С до прямой АВ.
Воспользовавшись понятием расстояния от точки до прямой, можно определить понятие расстояния между параллельными прямыми.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Расстояние между параллельными прямыми
Предварительно докажем еще одно свойство параллельных прямых.
Теорема. Все точки каждой из двух параллельных прямых находятся на равном расстоянии от другой прямой.
1) Пусть а и b две параллельные прямые, отрезок ОВ — перпендикуляр, проведенный из произвольной точки О прямой а к прямой b (рис. 122, а). Докажем, что расстояние от любой точки М прямой а до прямой b равно длине отрезка ОВ.
2) Проведем из точки М перпендикуляр MF к прямой b. Так как MF b, а прямые а и b параллельны, то MF а.
3) Прямоугольные треугольники OBF и OMF равны по гипотенузе и острому углу (сторона OF — общая, и равны внутренние накрест лежащие углы 1 и 2 при пересечении параллельных прямых а и b секущей OF). Из равенства треугольников следует, что MF = ОВ. Аналогично доказывается, что каждая точка прямой b находится на том же расстоянии от прямой а.
Определение. Расстоянием между двумя параллельными прямыми называется расстояние от произвольной точки одной из параллельных прямых до другой прямой.
Например, пусть прямая l проходит через вершину С треугольника ABC и параллельна его стороне АВ. Тогда расстояние между прямыми l и АВ равно длине отрезка CF, являющегося высотой треугольника ABC (рис. 122, б).
Правильная треугольная пирамида
Рассмотрим еще одну пространственную фигуру.
Проведем мысленный эксперимент. Представим, что часть листа бумаги, имеющая форму равностороннего треугольника, разбита на четыре части, каждая из которых имеет форму равностороннего треугольника (рис. 123, а). Такое разбиение осуществляют отрезки АВ, ВС и СА, которые соединяют середины сторон модели равностороннего треугольника.
Перегнем данную модель равностороннего треугольника по отрезкам АВ, ВС, СА и склеим так, чтобы вершины D1, D2 и D3 совпали (рис. 123, б, в).
Фигура, состоящая из части пространства, ограниченной четырьмя равными равносторонними треугольниками DAB, DBC, DAC и ABC, и точек этих треугольников, называется тетраэдром (или правильным тетраэдром), который обозначается DABC (см. рис.123, в). Равносторонние треугольники DAB, DBC, DAC и ABC называются гранями тетраэдра, а их вершины и стороны — вершинами и ребрами тетраэдра.
Правильная треугольная пирамида — это многогранник, у которого одна грань ABC — равносторонний треугольник, а остальные три грани — равные равнобедренные треугольники SAB, SBC, SAC, имеющие общую вершину S (рис. 124, а). Равносторонний треугольник ABC называется основанием правильной треугольной пирамиды, а треугольники SAB, SBC, SAC — ее боковыми гранями. Общая вершина S треугольников SAB, SBC, SAC называется вершиной пирамиды, стороны SA, SB, SC — боковыми ребрами правильной треугольной пирамиды, а вершины А, В, С называются вершинами при основании пирамиды.
Треугольная пирамида, основанием которой служит равносторонний треугольник ABC, а вершиной — точка S, обозначается SABC.
Так как равносторонний треугольник является равнобедренным, то понятно, что любой тетраэдр служит примером правильной треугольной пирамиды.
Равенство фигур
Ранее мы изучили понятия равенства отрезков, углов и треугольников. Треугольники называются равными, если они совмещаются при наложении. Аналогично определяется и равенство произвольных геометрических фигур.
Представление о моделях двух равных прямоугольников дают, например, два одинаковых листа писчей бумаги или два листа одной и той же книги. Модели равных фигур более сложной формы получим, если от одинаковых листов бумаги прямоугольной формы отрежем части, имеющие форму равных прямоугольных треугольников, как показано на рисунке 124, б, в.
Легко проверить, что части F1 и F2, оставшиеся после отрезания, можно совместить наложением, что служит подтверждением их одинаковой формы и размеров.
Как и в случае треугольников, можно говорить о равенстве двух произвольных фигур в случае их совмещения при наложении.
Две геометрические фигуры называются равными, если их можно совместить наложением.
В общем случае при рассмотрении равных фигур пользуются следующими свойствами равных фигур:
- любая фигура равна самой себе;
- если фигура F1 равна фигуре F2, то фигура F2 равна фигуре F1;
- если фигура F1 равна фигуре F2, а фигура F2 равна фигуре F3, то фигура F1 равна фигуре F3.
В предыдущих главах были изучены признаки равенства треугольников, расположенных в одной и той же плоскости. Заметим, что эти признаки справедливы и для треугольников, которые лежат в разных плоскостях.
Рассмотрим некоторые примеры. Пусть у нас есть развертка прямоугольного параллелепипеда, основаниями которого служат квадраты (рис. 125, а). На рисунке одинаковыми буквами обозначены точки, которые «склеиваются» в одну вершину параллелепипеда. Нетрудно понять, что отмеченные на развертке прямоугольные треугольники равны по двум катетам, а соответствующие им равные прямоугольные треугольники АА1В1 и D1C1C лежат в разных гранях прямоугольного параллелепипеда, а значит, — в разных плоскостях (рис. 125, б).
В дальнейшем при решении некоторых задач мы будем пользоваться утверждением о том, что признаки равенства треугольников справедливы и для треугольников, расположенных в разных плоскостях.
Пример №1
Точка О — середина стороны А С равностороннего треугольника ABC. Вычислите расстояние от точки О до прямой ВС, если ВО = 8 см (рис. 126, а, б).
АВС,
О АС,
Расстояние от точки О до прямой ВС равно длине перпендикуляра, проведенного из точки О к прямой ВС.
1) Пусть OF — перпендикуляр, проведенный из точки О к прямой ВС, тогда d(O, ВС) равно длине отрезка OF, который является катетом прямоугольного треугольника BFO.
2) Так как треугольник ABC равносторонний, а значит, и равнобедренный (АВ = ВС), то его медиана ВО является биссектрисой. Так как градусная мера каждого угла равностороннего треугольника равна 60°, то OBC = ABC = 30°.
3) В прямоугольном треугольнике BFO ( OFB = 90°) катет OF лежит против угла в 30°, следовательно, OF = В0 = 4 см, т. е. d(O, ВС) = 4 см.
Пример №2
Точки О и F — соответственно середины ребер В С и АВ тетраэдра DABC. Докажите, что DO = CF (рис. 127, а, б).
Для д оказательства равенства отрезков достаточно доказать равенство треугольников, сторонами которых являются эти отрезки. В данном случае можем рассмотреть треугольники AFC и BOD.
1) Так как точки О и F — середины сторон СВ и АВ равносторонних треугольников CBD и АСВ соответственно, то медианы DO и CF этих треугольников являются также и высотами. Следовательно, треугольники BOD и AFC являются прямоугольными.
2) Поскольку треугольники CBD и АСВ — равные и равносторонние, то АС = BD и CAB = DBC = 60°.
3) Таким образом, прямоугольные треугольники BOD и AFC равны по гипотенузе и острому углу (AC = DB, FAC = OBD = 60°). Из равенства этих треугольников следует, что DO = CF, что и требовалось доказать.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Задачи на построение циркулем и линейкой
- Задачи на построение по геометрии
- Угол — определение, виды, как обозначают с примерами
- Перпендикулярные прямые в геометрии
- Параллельные прямые
- Соотношения между сторонами и углами треугольника
- Неравенство треугольника — определение и вычисление
- Свойства прямоугольного треугольника
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Геометрия 7 класс (Урок№26 - Расстояние от точки до прямой. Расстояние между параллельными прямыми.)Скачать
Расстояние между двумя параллельными прямыми: определение и примеры нахождения
В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.
Видео:Расстояние от точки до прямой. Расстояние между параллельными прямыми, 7 классСкачать
Расстояние между двумя параллельными прямыми: определение
Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.
Приведем иллюстрацию для наглядности:
На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .
Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.
Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.
Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .
Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.
Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.
Видео:№277. Расстояние между параллельными прямыми а и b равно 3 см, а между параллельными прямымиСкачать
Нахождение расстояния между параллельными прямыми
Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.
Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.
Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:
— найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;
— произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.
Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.
Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:
M 1 H 1 = C 2 — C 1 A 2 + B 2
Выведем эту формулу.
Используем некоторую точку М 1 ( x 1 , y 1 ) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = — C 1 .
Когда С 2 0 , нормальное уравнение прямой b будет иметь вид:
A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0
При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:
A A 2 + B 2 x + B A 2 + B 2 y — C 2 A 2 + B 2 = 0
И тогда для случаев, когда С 2 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .
А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = — A A 2 + B 2 x 1 — B A 2 + B 2 y 1 — C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2
Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b ) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2
Выше мы получили: A x 1 + B y 1 = — C 1 , тогда можем преобразовать формулу: M 1 H 1 = — C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 — C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.
Разберем теорию на примерах.
Заданы две параллельные прямые y = 2 3 x — 1 и x = 4 + 3 · λ y = — 5 + 2 · λ . Необходимо определить расстояние между ними.
Решение
Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 ( 4 , — 5 ) . Требуемое расстояние – это расстояние между точкой М 1 ( 4 , — 5 ) до прямой y = 2 3 x — 1 , произведем его вычисление.
Заданное уравнение прямой с угловым коэффициентом y = 2 3 x — 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:
y = 2 3 x — 1 ⇔ 2 3 x — y — 1 = 0 ⇔ 2 x — 3 y — 3 = 0
Вычислим нормирующий множитель: 1 2 2 + ( — 3 ) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x — 3 y — 3 = 1 13 · 0 ⇔ 2 13 x — 3 13 y — 3 13 = 0 .
При x = 4 , а y = — 5 вычислим искомое расстояние как модуль значения крайнего равенства:
2 13 · 4 — 3 13 · — 5 — 3 13 = 20 13
Ответ: 20 13 .
В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x — 3 = 0 и x + 5 0 = y — 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.
Решение
Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y — 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:
M 1 H 1 = C 2 — C 1 A 2 + B 2 = 5 — ( — 3 ) 1 2 + 0 2 = 8
Ответ: 8 .
Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.
В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x — 3 1 = y — 1 = z + 2 4 и x + 5 1 = y — 1 — 1 = z — 2 4 . Необходимо найти расстояние между этими прямыми.
Решение
Из уравнения x — 3 1 = y — 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 ( 3 , 0 , — 2 ) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y — 1 — 1 = z — 2 4 .
Прямая x + 5 1 = y — 1 — 1 = z — 2 4 проходит через точку М 2 ( — 5 , 1 , 2 ) . Запишем направляющий вектор прямой x + 5 1 = y — 1 — 1 = z — 2 4 как b → с координатами ( 1 , — 1 , 4 ) . Определим координаты вектора M 2 M → :
M 2 M 1 → = 3 — ( — 5 , 0 — 1 , — 2 — 2 ) ⇔ M 2 M 1 → = 8 , — 1 , — 4
Вычислим векторное произведение векторов :
b → × M 2 M 1 → = i → j → k → 1 — 1 4 8 — 1 — 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = ( 8 , 36 , 7 )
Применим формулу расчета расстояния от точки до прямой в пространстве:
M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + ( — 1 ) 2 + 4 2 = 1409 3 2
Видео:7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать
Геометрия. 7 класс
Конспект урока
Расстояние от точки до прямой. Расстояние между параллельными прямыми
Перечень рассматриваемых вопросов:
- Понятие наклонной.
- Расстояние от точки до прямой.
- Расстояние между параллельными прямыми.
- Теорема о равноудалённости точек параллельных прямых.
Наклонной, проведенной из данной точки к данной прямой, называется любой отрезок, соединяющий данную точку с точкой прямойине являющийся перпендикуляром к прямой.
Длина перпендикуляра, проведенного из точки к прямой, называется расстоянием от этой точки до прямой.
Все точки каждой из двух параллельных прямых равноудалены от другой прямой.
Все точки плоскости, расположенные по одну сторону от данной прямой и равноудаленные от неё, лежат на прямой, параллельной данной.
Расстояние от произвольной точки одной из параллельных прямых до другой прямой называется расстоянием между этими прямыми.
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Расстояние между двумя точками – длина отрезка, соединяющего эти точки. Введём также следующие понятия:
1) расстояние от точки до прямой;
2) расстояние между параллельными прямыми.
Пусть отрезок АН – перпендикуляр, проведённый из точки А к прямой а, М – любая точка прямой а, отличная от Н. Отрезок АМ называется наклонной, проведённой из точки А к прямой а. В прямоугольном треугольнике АНМ катет АН меньше гипотенузы АМ. Следовательно, перпендикуляр, проведённый из точки к прямой, меньше любой наклонной, проведённой из той же точки к этой прямой.
Длина перпендикуляра, проведённого из точки к прямой, называется расстоянием от этой точки до прямой.
Отметим, что расстояние от точки до прямой равно наименьшему из расстояний от этой точки до точек прямой.
На рисунке расстояние от точки В до прямой р равно 3 см, а расстояние от точки С до этой прямой равно 5 см.
Прежде чем ввести понятие расстояния между параллельными прямыми, рассмотрим одно из важнейших свойств параллельных прямых.
Теорема. Все точки каждой из двух параллельных прямых равноудалены от другой прямой.
Доказательство. Рассмотрим параллельные прямые а и b. Отметим на прямой a точку A и проведём из этой точки перпендикуляр AB к прямой b. Докажем, что расстояние от любой точки X прямой а до прямой b равно АВ.
Проведём из точки Х перпендикуляр XY к прямой b. Так как XY перпендикулярно b, то XY перпендикулярно а. Прямоугольные треугольники ABY и YXA равны по гипотенузе и острому углу (AY – общая гипотенуза, а углы 1 и 2 равны как накрест лежащие углы при пересечении параллельных прямых a и b секущей AY). Следовательно, XY = AB.
Итак, любая точка X прямой a находится на расстоянии AB от прямой b. Очевидно, что все точки прямой b находятся на таком же расстоянии от прямой a. Теорема доказана.
Из доказанной теоремы следует, что точка, движущаяся по одной из параллельных прямых, все время находится на одном и том же расстоянии от другой прямой.
Расстояние от произвольной точки одной из параллельных прямых до другой прямой называется расстоянием между этими прямыми.
Отметим, что расстояние между параллельными прямыми равно наименьшему из расстояний от точек одной прямой до точек другой прямой.
Замечание. Справедливо утверждение, обратное доказанной теореме: все точки плоскости, расположенные по одну сторону от данной прямой и равноудалённые от неё, лежат на прямой, параллельной данной.
Доказательство: по аксиоме параллельных прямых, через точку A проведем прямую b, b║a, тогда все точки b║a равноудаленыот точек прямой a. Докажем, что B, C∈ b.
Пусть B∉ b, C∉ b, значит, расстояние от точки B до a и C будет больше или меньше, чем расстояние h. Но это противоречит AA1 = BB1 = CC1.
Следовательно, наше предположение неверно и A, B и С ∈ b || a, что и требовалось доказать.
Разбор заданий тренировочного модуля.
В равностороннем треугольнике ABC проведена биссектриса AD. Расстояние от точки D до прямой AC равно 12 см. Найти расстояние от точки A до прямой BC.
Объяснение: равносторонним треугольником называется треугольник с тремя равными сторонами (значит, и с тремя равными углами, то есть – по 60°). Равносторонний треугольник является частным случаем равнобедренного, поэтому все свойства, присущие равнобедренному треугольнику, распространяются и на равносторонний. Поэтому АD – не только биссектриса, но ещё и высота, стало быть AD⊥BC
Поскольку расстояние от точки D до прямой АС – это длина перпендикуляра, опущенного из точки D на прямую AC, то DH – данное расстояние. Рассмотрим треугольник AHD. В нём угол H = 90°, так как DH – перпендикуляр к AC (по определению расстояния от точки до прямой). Кроме этого, в данном треугольнике катет DH лежит против угла DAH = 30°, поэтому AD = 2 ∙ 12= 24см (по свойству).
Расстояние от точки А до прямой ВС – это длина опущенного на прямую ВС перпендикуляра. По доказанному AD⊥ BC, значит, AD = 24 см.
🎥 Видео
Расстояние между параллельными прямымиСкачать
Урок 23. Расстояние между параллельными прямыми (7 класс)Скачать
Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать
Расстояние между скрещивающимися прямыми за 1 минуту. #математикапрофиль2023 #егэ2023 #школа #fypСкачать
Определение расстояния между двумя прямымиСкачать
Геометрия. Свойства параллельных прямых. Расстояние между параллельными прямымиСкачать
38. Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать
Расстояние между параллельными и скрещивающимися прямыми | МатематикаСкачать
Расстояние между скрещивающимися прямымиСкачать
✓ Расстояние между скрещивающимися прямыми | ЕГЭ-2018. Задание 13. Математика | Борис ТрушинСкачать
Расстояние между прямыми в пространствеСкачать
Расстояние от точки до прямой. Расстояние между параллельными прямыми.Скачать
Расстояние между параллельными плоскостямиСкачать
Видеоурок "Расстояние между прямыми в пространстве"Скачать