Что называют расстоянием между двумя параллельными прямыми на плоскости

Расстояние между двумя параллельными прямыми – определение и примеры нахождения.

В этой статье дано определение расстояния между двумя параллельными прямыми на плоскости и в трехмерном пространстве, а также разобран метод координат, позволяющий вычислять расстояние между параллельными прямыми. Сначала приведена необходимая теория, после чего приведены подробные решения примеров и задач, в которых находится расстояние между двумя параллельными прямыми.

Навигация по странице.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Расстояние между двумя параллельными прямыми – определение.

Определение расстояния между двумя параллельными прямыми дается через расстояние от точки до прямой.

Расстояние между двумя параллельными прямыми – это расстояние от произвольной точки одной из параллельных прямых до другой прямой.

Для наглядности изобразим две параллельные прямые a и b , отметим на прямой а произвольную точку М1 , опустим перпендикуляр из точки М1 на прямую b , обозначив его H1 . Отрезок М1H1 соответствует расстоянию между параллельными прямыми a и b .

Что называют расстоянием между двумя параллельными прямыми на плоскости

Приведенное определение расстояния между двумя параллельными прямыми справедливо как для параллельных прямых на плоскости, так и для прямых в трехмерном пространстве. Более того, такое определение расстояния между двумя параллельными прямыми принято не случайно. Оно тесно связано со следующей теоремой.

Все точки одной из двух параллельных прямых удалены на одинаковое расстояние от другой прямой.

Рассмотрим параллельные прямые a и b . Отметим на прямой a точку М1 , опустим из нее перпендикуляр на прямую b . Основание этого перпендикуляра обозначим как H1 . Тогда длина перпендикуляра М1H1 есть расстояние между параллельными прямыми a и b по определению. Докажем, что Что называют расстоянием между двумя параллельными прямыми на плоскостиравно Что называют расстоянием между двумя параллельными прямыми на плоскости, где М2 – произвольная точка прямой a , отличная от точки M1 , а H2 – основание перпендикуляра, проведенного из точки М2 на прямую b . Доказав этот факт, мы докажем и саму теорему.

Что называют расстоянием между двумя параллельными прямыми на плоскости

Так как внутренние накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей, равны (об этом говорилось в статье параллельные прямые, параллельность прямых), то Что называют расстоянием между двумя параллельными прямыми на плоскости, а прямая M2H2 , перпендикулярная прямой b по построению, перпендикулярна и прямой a . Тогда треугольники М1H1H2 и М2М1H2 прямоугольные, и, более того, они равны по гипотенузе и острому углу: М1H2 – общая гипотенуза, Что называют расстоянием между двумя параллельными прямыми на плоскости. Из равенства треугольников следует равенство их соответствующих сторон, поэтому, Что называют расстоянием между двумя параллельными прямыми на плоскости. Теорема доказана.

Следует заметить, что расстояние между двумя параллельными прямыми является наименьшим из расстояний от точек одной прямой до точек другой прямой.

Видео:19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать

19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямыми

Нахождение расстояния между параллельными прямыми – теория, примеры, решения.

Итак, нахождение расстояния между параллельными прямыми сводится к нахождению длины перпендикуляра, проведенного из некоторой точки одной из прямых на другую прямую. При этом подбирается метод, позволяющий это расстояние отыскать. Выбор метода зависит от условий конкретной задачи. В некоторых случаях можно использовать теорему Пифагора, в других — признаки равенства или подобия треугольников, определения синуса, косинуса или тангенса угла и т.п. Если же параллельные прямые заданы в прямоугольной системе координат, то расстояние между заданными параллельными прямыми можно вычислить методом координат. На нем и остановимся.

Сформулируем условие задачи.

Пусть на плоскости или в трехмерном пространстве зафиксирована прямоугольная система координат, заданы две параллельные прямые a и b и требуется найти расстояние между этими прямыми.

Решение этой задачи строится на определении расстояния между параллельными прямыми — чтобы найти расстояние между двумя заданными параллельными прямыми нужно:

  • определить координаты некоторой точки М1 , лежащей на прямой a (или на прямой b );
  • вычислить расстояние от точки М1 до прямой b (или a ).

С определением координат точки М1 , лежащей на какой-нибудь из заданных параллельных прямых, проблем не возникнет, если, конечно, Вам знакомы основные виды уравнения прямой на плоскости и уравнения прямой в пространстве. Для нахождения расстояния от точки М1 до нужной из заданных параллельных прямых Вам будет полезна информация из раздела нахождение расстояния от точки до прямой.

В частности, если в прямоугольной системе координат Oxy на плоскости прямую a задает общее уравнение прямой вида Что называют расстоянием между двумя параллельными прямыми на плоскости, а прямую b , параллельную прямой a , — общее уравнение прямой Что называют расстоянием между двумя параллельными прямыми на плоскости, то расстояние Что называют расстоянием между двумя параллельными прямыми на плоскостимежду этими параллельными прямыми можно вычислить по формуле Что называют расстоянием между двумя параллельными прямыми на плоскости.

Покажем вывод этой формулы.

Возьмем точку Что называют расстоянием между двумя параллельными прямыми на плоскости, которая лежит на прямой a , тогда координаты точки М1 удовлетворяют уравнению Что называют расстоянием между двумя параллельными прямыми на плоскости, то есть, справедливо равенство Что называют расстоянием между двумя параллельными прямыми на плоскости, откуда имеем Что называют расстоянием между двумя параллельными прямыми на плоскости.

Если Что называют расстоянием между двумя параллельными прямыми на плоскости, то нормальное уравнение прямой b имеет вид Что называют расстоянием между двумя параллельными прямыми на плоскости, а если Что называют расстоянием между двумя параллельными прямыми на плоскости, то нормальное уравнение прямой b имеет вид Что называют расстоянием между двумя параллельными прямыми на плоскости. Тогда при Что называют расстоянием между двумя параллельными прямыми на плоскостирасстояние от точки Что называют расстоянием между двумя параллельными прямыми на плоскостидо прямой b вычисляется по формуле Что называют расстоянием между двумя параллельными прямыми на плоскости, а при Что называют расстоянием между двумя параллельными прямыми на плоскости— по формуле
Что называют расстоянием между двумя параллельными прямыми на плоскости

То есть, при любом значении С2 расстояние Что называют расстоянием между двумя параллельными прямыми на плоскостиот точки Что называют расстоянием между двумя параллельными прямыми на плоскостидо прямой b можно вычислить по формуле Что называют расстоянием между двумя параллельными прямыми на плоскости. А если учесть равенство Что называют расстоянием между двумя параллельными прямыми на плоскости, которое было получено выше, то последняя формула примет вид Что называют расстоянием между двумя параллельными прямыми на плоскости. На этом вывод формулы для вычисления расстояние между двумя параллельными прямыми, заданными общими уравнениями прямых вида Что называют расстоянием между двумя параллельными прямыми на плоскостии Что называют расстоянием между двумя параллельными прямыми на плоскостизавершен.

Разберем решения примеров.

Начнем с нахождения расстояния между двумя параллельными прямыми, заданными в прямоугольной системе координат Oxy на плоскости.

Найдите расстояние между параллельными прямыми Что называют расстоянием между двумя параллельными прямыми на плоскостии Что называют расстоянием между двумя параллельными прямыми на плоскости.

Очевидно, что прямая, которой соответствуют параметрические уравнения прямой на плоскости вида Что называют расстоянием между двумя параллельными прямыми на плоскости, проходит через точку Что называют расстоянием между двумя параллельными прямыми на плоскости.

Искомое расстояние между параллельными прямыми равно расстоянию от точки Что называют расстоянием между двумя параллельными прямыми на плоскостидо прямой Что называют расстоянием между двумя параллельными прямыми на плоскости. Вычислим его.

Получим нормальное уравнение прямой, которой отвечает уравнение прямой с угловым коэффициентом вида Что называют расстоянием между двумя параллельными прямыми на плоскости. Для этого сначала запишем общее уравнение прямой: Что называют расстоянием между двумя параллельными прямыми на плоскости. Теперь вычислим нормирующий множитель: Что называют расстоянием между двумя параллельными прямыми на плоскости. Умножив на него обе части последнего уравнения, имеем нормальное уравнение прямой: Что называют расстоянием между двумя параллельными прямыми на плоскости. Искомое расстояние равно модулю значения выражения Что называют расстоянием между двумя параллельными прямыми на плоскости, вычисленного при Что называют расстоянием между двумя параллельными прямыми на плоскости. Итак, расстояние между заданными параллельными прямыми равно
Что называют расстоянием между двумя параллельными прямыми на плоскости

Второй способ решения.

Получим общие уравнения заданных параллельных прямых.

Выше мы выяснили, что прямой Что называют расстоянием между двумя параллельными прямыми на плоскостисоответствует общее уравнение прямой Что называют расстоянием между двумя параллельными прямыми на плоскости. Перейдем от параметрических уравнений прямой вида Что называют расстоянием между двумя параллельными прямыми на плоскостик общему уравнению этой прямой:
Что называют расстоянием между двумя параллельными прямыми на плоскости

Коэффициенты при переменных x и y в полученных общих уравнениях параллельных прямых равны, поэтому мы сразу можем применить формулу для вычисления расстояния между параллельными прямыми на плоскости: Что называют расстоянием между двумя параллельными прямыми на плоскости.

Что называют расстоянием между двумя параллельными прямыми на плоскости.

На плоскости введена прямоугольная система координат Oxy и даны уравнения двух параллельных прямых Что называют расстоянием между двумя параллельными прямыми на плоскостии Что называют расстоянием между двумя параллельными прямыми на плоскости. Найдите расстояние между указанными параллельными прямыми.

Канонические уравнения прямой на плоскости вида Что называют расстоянием между двумя параллельными прямыми на плоскостипозволяют сразу записать координаты точки М1 , лежащей на этой прямой: Что называют расстоянием между двумя параллельными прямыми на плоскости. Расстояние от этой точки до прямой Что называют расстоянием между двумя параллельными прямыми на плоскостиравно искомому расстоянию между параллельными прямыми. Уравнение Что называют расстоянием между двумя параллельными прямыми на плоскостиявляется нормальным уравнением прямой, следовательно, мы можем сразу вычислить расстояние от точки Что называют расстоянием между двумя параллельными прямыми на плоскостидо прямой Что называют расстоянием между двумя параллельными прямыми на плоскости: Что называют расстоянием между двумя параллельными прямыми на плоскости.

Второй способ решения.

Общее уравнение одной из заданных параллельных прямых нам уже дано Что называют расстоянием между двумя параллельными прямыми на плоскости. Приведем каноническое уравнение прямой Что называют расстоянием между двумя параллельными прямыми на плоскостик общему уравнению прямой: Что называют расстоянием между двумя параллельными прямыми на плоскости. Коэффициенты при переменной x в общих уравнениях заданных параллельных прямых равны (при переменной y коэффициенты тоже равны — они равны нулю), поэтому можно применять формулу, позволяющую вычислить расстояние между заданными параллельными прямыми: Что называют расстоянием между двумя параллельными прямыми на плоскости.

Осталось рассмотреть пример нахождения расстояния между параллельными прямыми в трехмерном пространстве.

Найдите расстояние между двумя параллельными прямыми, которым в прямоугольной системе координат Oxyz соответствуют канонические уравнения прямой в пространстве вида Что называют расстоянием между двумя параллельными прямыми на плоскостии Что называют расстоянием между двумя параллельными прямыми на плоскости.

Очевидно, прямая Что называют расстоянием между двумя параллельными прямыми на плоскостипроходит через точку Что называют расстоянием между двумя параллельными прямыми на плоскости. Вычислим расстояние Что называют расстоянием между двумя параллельными прямыми на плоскостиот этой точки до прямой Что называют расстоянием между двумя параллельными прямыми на плоскости— оно даст нам искомое расстояние между параллельными прямыми.

Прямая Что называют расстоянием между двумя параллельными прямыми на плоскостипроходит через точку Что называют расстоянием между двумя параллельными прямыми на плоскости. Обозначим направляющий вектор прямой Что называют расстоянием между двумя параллельными прямыми на плоскостикак Что называют расстоянием между двумя параллельными прямыми на плоскости, он имеет координаты Что называют расстоянием между двумя параллельными прямыми на плоскости. Вычислим координаты вектора Что называют расстоянием между двумя параллельными прямыми на плоскости(при необходимости смотрите статью координаты вектора по координатам точек): Что называют расстоянием между двумя параллельными прямыми на плоскости. Найдем векторное произведение векторов Что называют расстоянием между двумя параллельными прямыми на плоскостии Что называют расстоянием между двумя параллельными прямыми на плоскости:
Что называют расстоянием между двумя параллельными прямыми на плоскости

Теперь осталось применить формулу, позволяющую вычислить расстояние от точки до прямой в пространстве: Что называют расстоянием между двумя параллельными прямыми на плоскости.

расстояние между заданными параллельными прямыми равно Что называют расстоянием между двумя параллельными прямыми на плоскости.

Видео:Расстояние между параллельными прямымиСкачать

Расстояние между параллельными прямыми

Расстояние между двумя параллельными прямыми: определение и примеры нахождения

В материале этой статьи разберем вопрос нахождения расстояния между двумя параллельными прямыми, в частности, при помощи метода координат. Разбор типовых примеров поможет закрепить полученные теоретические знания.

Видео:Расстояние между параллельными плоскостямиСкачать

Расстояние между параллельными плоскостями

Расстояние между двумя параллельными прямыми: определение

Расстояние между двумя параллельными прямыми – это расстояние от некоторой произвольной точки одной из параллельных прямых до другой прямой.

Приведем иллюстрацию для наглядности: Что называют расстоянием между двумя параллельными прямыми на плоскости

На чертеже изображены две параллельные прямые a и b . Точка М 1 принадлежит прямой a , из нее опущен перпендикуляр на прямую b . Полученный отрезок М 1 Н 1 и есть расстояние между двумя параллельными прямыми a и b .

Указанное определение расстояния между двумя параллельными прямыми справедливо как на плоскости, так и для прямых в трехмерном пространстве. Кроме того, данное определение взаимосвязано со следующей теоремой.

Когда две прямые параллельны, все точки одной из них равноудалены от другой прямой.

Пусть нам заданы две параллельные прямые a и b . Зададим на прямой а точки М 1 и М 2 , опустим из них перпендикуляры на прямую b , обозначив их основания соответственно как Н 1 и Н 2 . М 1 Н 1 – это расстояние между двумя параллельными прямыми по определению, и нам необходимо доказать, что | М 1 Н 1 | = | М 2 Н 2 | .

Что называют расстоянием между двумя параллельными прямыми на плоскости

Пусть будет также существовать некоторая секущая, которая пересекает две заданные параллельные прямые. Условие параллельности прямых, рассмотренное в соответствующей статье, дает нам право утверждать, что в данном случае внутренние накрест лежащие углы, образованные при пересечении секущей заданных прямых, являются равными: ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Прямая М 2 Н 2 перпендикулярна прямой b по построению, и, конечно, перпендикулярна прямой a . Получившиеся треугольники М 1 Н 1 Н 2 и М 2 М 1 Н 2 являются прямоугольными и равными друг другу по гипотенузе и острому углу: М 1 Н 2 – общая гипотенуза, ∠ M 2 M 1 H 2 = ∠ H 1 H 2 M 1 . Опираясь на равенство треугольников, мы можем говорить о равенстве их сторон, т.е.: | М 1 Н 1 | = | М 2 Н 2 | . Теорема доказана.

Отметим, что расстояние между двумя параллельными прямыми – наименьшее из расстояний от точек одной прямой до точек другой.

Видео:Видеоурок "Расстояние между прямыми в пространстве"Скачать

Видеоурок "Расстояние между прямыми в пространстве"

Нахождение расстояния между параллельными прямыми

Мы уже выяснили, что, по сути, чтобы найти расстояние между двумя параллельными прямыми, необходимо определить длину перпендикуляра, опущенного из некой точки одной прямой на другую. Способов, как это сделать, несколько. В каких-то задачах удобно воспользоваться теоремой Пифагора; другие предполагают использование признаков равенства или подобия треугольников и т.п. В случаях, когда прямые заданы в прямоугольной системе координат, возможно вычислить расстояние между двумя параллельными прямыми, используя метод координат. Рассмотрим его подробнее.

Зададим условия. Допустим, зафиксирована прямоугольная система координат, в которой заданы две параллельные прямые a и b . Необходимо определить расстояние между заданными прямыми.

Решение задачи построим на определении расстояния между параллельными прямыми: для нахождения расстояния между двумя заданными параллельными прямыми необходимо:

— найти координаты некоторой точки М 1 , принадлежащей одной из заданных прямых;

— произвести вычисление расстояния от точки М 1 до заданной прямой, которой эта точка не принадлежит.

Опираясь на навыки работы с уравнениями прямой на плоскости или в пространстве, определить координаты точки М 1 просто. При нахождении расстояния от точки М 1 до прямой пригодится материал статьи о нахождении расстояния от точки до прямой.

Вернемся к примеру. Пусть прямая a описывается общим уравнением A x + B y + C 1 = 0 , а прямая b – уравнением A x + B y + C 2 = 0 . Тогда расстояние между двумя заданными параллельными прямыми возможно вычислить, используя формулу:

M 1 H 1 = C 2 — C 1 A 2 + B 2

Выведем эту формулу.

Используем некоторую точку М 1 ( x 1 , y 1 ) , принадлежащую прямой a . В таком случае координаты точки М 1 будут удовлетворять уравнению A x 1 + B y 1 + C 1 = 0 . Таким образом, справедливым является равенство: A x 1 + B y 1 + C 1 = 0 ; из него получим: A x 1 + B y 1 = — C 1 .

Когда С 2 0 , нормальное уравнение прямой b будет иметь вид:

A A 2 + B 2 x + B A 2 + B 2 y + C 2 A 2 + B 2 = 0

При С 2 ≥ 0 нормальное уравнение прямой b будет выглядеть так:

A A 2 + B 2 x + B A 2 + B 2 y — C 2 A 2 + B 2 = 0

И тогда для случаев, когда С 2 0 , применима формула: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2 .

А для С 2 ≥ 0 искомое расстояние определяется по формуле M 1 H 1 = — A A 2 + B 2 x 1 — B A 2 + B 2 y 1 — C 2 A 2 + B 2 = = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Таким образом, при любом значении числа С 2 длина отрезка | М 1 Н 1 | (от точки М 1 до прямой b ) вычисляется по формуле: M 1 H 1 = A A 2 + B 2 x 1 + B A 2 + B 2 y 1 + C 2 A 2 + B 2

Выше мы получили: A x 1 + B y 1 = — C 1 , тогда можем преобразовать формулу: M 1 H 1 = — C 1 A 2 + B 2 + C 2 A 2 + B 2 = C 2 — C 1 A 2 + B 2 . Так мы, собственно, получили формулу, указанную в алгоритме метода координат.

Разберем теорию на примерах.

Заданы две параллельные прямые y = 2 3 x — 1 и x = 4 + 3 · λ y = — 5 + 2 · λ . Необходимо определить расстояние между ними.

Решение

Исходные параметрические уравнения дают возможность задать координаты точки, через которую проходит прямая, описываемая параметрическими уравнениями. Таким образом, получаем точку М 1 ( 4 , — 5 ) . Требуемое расстояние – это расстояние между точкой М 1 ( 4 , — 5 ) до прямой y = 2 3 x — 1 , произведем его вычисление.

Заданное уравнение прямой с угловым коэффициентом y = 2 3 x — 1 преобразуем в нормальное уравнение прямой. С этой целью сначала осуществим переход к общему уравнению прямой:

y = 2 3 x — 1 ⇔ 2 3 x — y — 1 = 0 ⇔ 2 x — 3 y — 3 = 0

Вычислим нормирующий множитель: 1 2 2 + ( — 3 ) 2 = 1 13 . Умножим на него обе части последнего уравнения и, наконец, получим возможность записать нормальное уравнение прямой: 1 13 · 2 x — 3 y — 3 = 1 13 · 0 ⇔ 2 13 x — 3 13 y — 3 13 = 0 .

При x = 4 , а y = — 5 вычислим искомое расстояние как модуль значения крайнего равенства:

2 13 · 4 — 3 13 · — 5 — 3 13 = 20 13

Ответ: 20 13 .

В фиксированной прямоугольной системе координат O x y заданы две параллельные прямые, определяемые уравнениями x — 3 = 0 и x + 5 0 = y — 1 1 . Необходимо найти расстояние между заданными параллельными прямыми.

Решение

Условиями задачи определено одно общее уравнение, задаваемое одну из исходных прямых: x-3=0. Преобразуем исходное каноническое уравнение в общее: x + 5 0 = y — 1 1 ⇔ x + 5 = 0 . При переменной x коэффициенты в обоих уравнениях равны (также равны и при y – нулю), а потому имеем возможность применить формулу для нахождения расстояния между параллельными прямыми:

M 1 H 1 = C 2 — C 1 A 2 + B 2 = 5 — ( — 3 ) 1 2 + 0 2 = 8

Ответ: 8 .

Напоследок рассмотрим задачу на нахождение расстояния между двумя параллельными прямыми в трехмерном пространстве.

В прямоугольной системе координат O x y z заданы две параллельные прямые, описываемые каноническими уравнениями прямой в пространстве: x — 3 1 = y — 1 = z + 2 4 и x + 5 1 = y — 1 — 1 = z — 2 4 . Необходимо найти расстояние между этими прямыми.

Решение

Из уравнения x — 3 1 = y — 1 = z + 2 4 легко определются координаты точки, через которую проходит прямая, описываемая этим уравнением: М 1 ( 3 , 0 , — 2 ) . Произведем вычисление расстояния | М 1 Н 1 | от точки М 1 до прямой x + 5 1 = y — 1 — 1 = z — 2 4 .

Прямая x + 5 1 = y — 1 — 1 = z — 2 4 проходит через точку М 2 ( — 5 , 1 , 2 ) . Запишем направляющий вектор прямой x + 5 1 = y — 1 — 1 = z — 2 4 как b → с координатами ( 1 , — 1 , 4 ) . Определим координаты вектора M 2 M → :

M 2 M 1 → = 3 — ( — 5 , 0 — 1 , — 2 — 2 ) ⇔ M 2 M 1 → = 8 , — 1 , — 4

Вычислим векторное произведение векторов :

b → × M 2 M 1 → = i → j → k → 1 — 1 4 8 — 1 — 4 = 8 · i → + 36 · j → + 7 · k → ⇒ b → × M 2 M 1 → = ( 8 , 36 , 7 )

Применим формулу расчета расстояния от точки до прямой в пространстве:

M 1 H 1 = b → × M 2 M 1 → b → = 8 2 + 36 2 + 7 2 1 2 + ( — 1 ) 2 + 4 2 = 1409 3 2

Видео:Геометрия 7 класс (Урок№26 - Расстояние от точки до прямой. Расстояние между параллельными прямыми.)Скачать

Геометрия 7 класс (Урок№26 - Расстояние от точки до прямой. Расстояние между параллельными прямыми.)

Расстояние между прямыми на плоскости онлайн

С помощю этого онлайн калькулятора можно найти расстояние между прямыми на плоскости. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми, задайте вид уравнения прямых («канонический», «параметрический» или «общий»), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать

7 класс, 38 урок, Расстояние от точки до прямой. Расстояние между параллельными прямыми

Расстояние между прямыми на плоскости − теория, примеры и решения

  • Содержание
  • 1. Расстояние между прямыми в каноническом виде.
  • 2. Расстояние между прямыми в общем виде.

1. Расстояние между прямыми в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

Что называют расстоянием между двумя параллельными прямыми на плоскости.(1)
Что называют расстоянием между двумя параллельными прямыми на плоскости,(2)

Прямые (1) и (2) могут совпадать, быть паралленьными или пересекаться. Если прямые пересекаются, то понятие расстояния между ними не имеет смысла (не определено). Если прямые совпадают, то расстояние между ними равно нулю. Если же они параллельны, то расстояние между ними можно вычислить следующими методами:

Что называют расстоянием между двумя параллельными прямыми на плоскости

Рассмотрим этот метод подробнее. Каноническое уравнение прямой L3, проходящей через точку M1(x1, y1) имеет следующий вид:

Что называют расстоянием между двумя параллельными прямыми на плоскости,(3)

Для того, чтобы прямая L3 была перпендикулярна прямой L2, направляющие векторы этих прямых должны быть ортогональны, т.е. скалярное произведение этих векторов должен быть равным нулю:

Что называют расстоянием между двумя параллельными прямыми на плоскости,(4)

Так как направляющий вектор прямой не может быть равным нулю, то предположим, что координата m2 вектора q2 отлична от нуля. Тогда в качестве вектора q3 можно взять вектор q3=<m3, p3>=<p2, −m2>. Следовательно, уравнение прямой L3 получит следующий вид:

Что называют расстоянием между двумя параллельными прямыми на плоскости,(5)

Для вычисления координат точки пересечения прямых L2 и L3, решим систему линейных уравнений (2) и (5). Преобразуем эти уравнения сделав перекрестное умножение:

p2(xx2)=m2(yy2)
p3(xx1)=m3(yy1)

Откроем скобки и перенесем налево переменную y:

p2xm2y=p2x2m2y2(6)
p3xm3y=p3x1m3y1(7)

Запишем (6) и (7) в матричном виде:

Что называют расстоянием между двумя параллельными прямыми на плоскости,(8)
λ1=p2x2m2y2,(9)
λ2=p3x1m3y1.(10)
Что называют расстоянием между двумя параллельными прямыми на плоскости,(11)

Для построения обратной матрицы воспользуемся методом алгебраических дополнений. Сначала вычислим определитель матрицы:

Что называют расстоянием между двумя параллельными прямыми на плоскости.

Тогда обратная матрица примет следующий вид:

Что называют расстоянием между двумя параллельными прямыми на плоскости.(12)

Подставляя значение обратной матрицы (12) в (11), получим:

Что называют расстоянием между двумя параллельными прямыми на плоскости.
Что называют расстоянием между двумя параллельными прямыми на плоскости.(13)

Расстояние между точками M1 и M3 равно:

Что называют расстоянием между двумя параллельными прямыми на плоскости.(14)

Полученное расстояние d также является расстоянием между прямыми L1 и L2.

Пример 1. Найти расстояние между прямыми L1 и L2:

Что называют расстоянием между двумя параллельными прямыми на плоскости(15)
Что называют расстоянием между двумя параллельными прямыми на плоскости(16)

Пользуясь формулой (5), построим уравнение прямой L3, проходящей через точку M1 и перпендикулярной прямой L2:

Что называют расстоянием между двумя параллельными прямыми на плоскости(17)

Для вычисления координат точки пересечения прямых L2 и L3, решим систему линейных уравнений (16) и (17). Преобразуем эти уравнения сделав перекрестное умножение:

Сделаем эквивалентные преобразования:

−2x+4y=−10−4(18)

Запишем систему линейных уравнений (18)-(19) в матричном виде:

Что называют расстоянием между двумя параллельными прямыми на плоскости

Вычислим вектор (x, y) T :

Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости

Получили точку M3(x3, y3)=(3, −2), которая является точкой пересечения прямых L2 и L3. Расстояние между прямыми L1 и L2 равно расстоянию между точками M1 и M3. Вычислим это расстояние:

Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости

Ответ: Расстояние между прямыми L1 и L2 равно d=4.47213595.

Метод 2. Найдем расстояние между прямыми L1 и L2 (уравнения (1) и (2)). Уравнение прямой L3 в общем виде, проходящей через точку M1 и перпендикулярной прямой L2 имеет следующий вид:

A3(xx1)+B3(yy1)=0.(20)

Для того, чтобы прямая L3 была перпендикулярна прямой L2, нормальный вектор n3=<A3, B3> прямой L3 должен быть коллинеарным направляющему вектору q2 прямой L2. Поэтому в качестве нормального вектора прямой L3 можно взять вектор q2=<m2, p2>. Подставим координаты вектора q2 в (20):

m2(xx1)+p2(yy1)=0.
Что называют расстоянием между двумя параллельными прямыми на плоскости(21)

Приведем уравнение прямой (2) к параметрическому виду:

Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости(22)

Подставим (22) в (21) и решим относительно t:

Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости(23)

Мы получили такое значение t, при котором соответствующая точка на прямой L2 удовлетворяет уравнению прямой L3, т.е. находится на этой прямой (является точкой пересечения прямых L2 и L3). Подставляя значение t в (22), получим координаты точки M3(x3, y3). Далее вычисляем расстояние между точками M1 и M3:

Что называют расстоянием между двумя параллельными прямыми на плоскости(24)

Пример 2. Найти расстояние между прямыми

Что называют расстоянием между двумя параллельными прямыми на плоскости(25)
Что называют расстоянием между двумя параллельными прямыми на плоскости(26)
Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости

Уравнение прямой L3, проходящей через точку M1 и имеющий нормальный вектор n3=<A3, B3> представляется формулой:

Что называют расстоянием между двумя параллельными прямыми на плоскости(27)

Для того, чтобы прямая L3 была перпендикулярна прямой L2, нормальный вектор n3=<A3, B3> прямой L3 должен быть коллинеарным направляющему вектору q2 прямой L2. Поэтому в качестве нормального вектора прямой L3 можно взять вектор q2=<m2, p2>=. Подставим координаты вектора q2 и координаты точкиM1 в (27):

Что называют расстоянием между двумя параллельными прямыми на плоскости

После упрощения получим уравнение прямой L3, проходящей через точку M1 и перпендикулярной прямой L2:

Что называют расстоянием между двумя параллельными прямыми на плоскости(28)

Для нахождения точки пересечения прямых L2 и L3 проще всего пользоваться параметрическим уравнением прямой L2. Составим параметрическое уравнение прямой L2:

Что называют расстоянием между двумя параллельными прямыми на плоскости

Выразим переменные x, y через параметр t :

Что называют расстоянием между двумя параллельными прямыми на плоскости(29)

Подставим значения x, y из выражения (29) в (28) и решим относительно t:

Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости

Подставляя значение t в выражения (29), получим координаты точки M3:

Что называют расстоянием между двумя параллельными прямыми на плоскости

Вычислим расстояние между точками M1 и M3

Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости

Ответ. Расстояние между прямыми L1 и L2 равно:

Что называют расстоянием между двумя параллельными прямыми на плоскости

2. Расстояние между прямыми в общем виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы параллельные прямые L1 и L2:

Что называют расстоянием между двумя параллельными прямыми на плоскости(30)
Что называют расстоянием между двумя параллельными прямыми на плоскости(31′)

где n1=<A1, B1> и n2=<A2, B2> − направляющие векторы прямых L1 и L2, соответственно. Так как прямые параллельны, то можно один из них умножить на какое-то число так, чтобы нормальные векторы этих прямых совпадали. Пусть A2≠0. Умножим (31′) на A1/A’2. Тогда уравнение (2′) примет следующий вид:

Что называют расстоянием между двумя параллельными прямыми на плоскости(31)
Что называют расстоянием между двумя параллельными прямыми на плоскости

Покажем, что расстояние между прямыми L1 и L2 равно:

Что называют расстоянием между двумя параллельными прямыми на плоскости(32)

Метод 1. Пусть A1≠0. Тогда точка M1(x1, y1)=M1(−C1/A1, 0) принадлежит прямой L1. Это легко проверить, подставив координаты точки M1 в (30). Построим уравнение прямой, проходящей через точку M1 и перпендикулярной прямой L2:

A3(xx1)+B3(yy1)=0

Поскольку прямая L3 перпендикулярна прямой L2, то нормальные векторы этих прямых ортогональны. Тогда вместо нормального вектора n3=<A3, B3> прямой L3 можно взять вектор, ортогональный нормальному вектору n2, т.е. вектор n3=<B1, −A1> (так как скалярное произведение этих векторов равно нулю). Тогда имеем:

B1(xx1)−A1(yy1)=0(33)
Что называют расстоянием между двумя параллельными прямыми на плоскости(34)

Найдем точку пересечения прямых L2 и L3. Для этого решим систему линейных уравнений (31),(34), представляя в матричном виде:

Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскостиЧто называют расстоянием между двумя параллельными прямыми на плоскостиЧто называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости, Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскостиЧто называют расстоянием между двумя параллельными прямыми на плоскости

Наконец, расстояние между точками M1 и M3, и следовательно, расстояние между прямыми L1 и L2 равно:

Что называют расстоянием между двумя параллельными прямыми на плоскостиЧто называют расстоянием между двумя параллельными прямыми на плоскости
Что называют расстоянием между двумя параллельными прямыми на плоскости

(35)

Метод 2. Воспользуемся понятием отклонения точки от прямой. Пусть M1(x1, y1) точка, принадлежащая прямой (30), Тогда выполняется равенство

A1x1+B1y1+C1=0.

(35)
Что называют расстоянием между двумя параллельными прямыми на плоскости

При С2 Пример 3. Найти расстояние между прямыми

L1: x1+2y1−2=0,
L2: x1+2y1+6=0,
Что называют расстоянием между двумя параллельными прямыми на плоскости

Ответ. Расстояние между прямыми L1 и L2 равно:

📺 Видео

Определение расстояние между параллельными прямыми (Способ замены плоскостей проекции).Скачать

Определение расстояние между параллельными прямыми (Способ замены плоскостей проекции).

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Урок 23. Расстояние между параллельными прямыми (7 класс)Скачать

Урок 23.  Расстояние между параллельными прямыми (7 класс)

Расстояние от точки до прямой. Расстояние между параллельными прямыми, 7 классСкачать

Расстояние от точки до прямой. Расстояние между параллельными прямыми, 7 класс

Расстояние. Математика. 6 классСкачать

Расстояние. Математика. 6 класс

6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать

6 .7 кл Построение параллельных прямых.Как построить параллельные прямые

Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать

Расстояние от точки до прямой. Расстояние между параллельными прямыми

Расстояние от точки до прямой. Расстояние между параллельными прямыми.Скачать

Расстояние от точки до прямой. Расстояние между параллельными прямыми.

№277. Расстояние между параллельными прямыми а и b равно 3 см, а между параллельными прямымиСкачать

№277. Расстояние между параллельными прямыми а и b равно 3 см, а между параллельными прямыми

38. Расстояние от точки до прямой. Расстояние между параллельными прямымиСкачать

38. Расстояние от точки до прямой. Расстояние между параллельными прямыми

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

29. Теорема об углах, образованных двумя параллельными прямыми и секущейСкачать

29. Теорема об углах, образованных двумя параллельными прямыми и секущей
Поделиться или сохранить к себе: