Если посмотреть на числовую окружность , то можно заметить, что оси абсцисс и ординат разбивают ее на четыре части. Эти части называют четвертями и нумеруют в том порядке как их проходят, двигаясь в положительном направлении (против часовой стрелки).
(() (frac) (;2π)) — четвертая четверть
- Почему так важно определять какой четверти принадлежит угол?
- Про непостоянство четвертей:
- Тригонометрия простыми словами
- Значения тригонометрических функций для первой четверти круга (0° – 90°)
- Принцип повтора знаков тригонометрических функций
- Тригонометрический круг
- Углы в радианах
- Тригонометрический круг: вся тригонометрия на одном рисунке
- А теперь подробно о тригонометрическом круге:
- 🔥 Видео
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Почему так важно определять какой четверти принадлежит угол?
Дело в том, что каждая четверть уникальна в плане знаков тригонометрических функций .
Например, для любого угла из второй четверти — синус положителен, а косинус , тангенс и котангенс отрицательны. А для любого угла из первой четверти — все четыре функции будут положительны.
Теперь давайте рассмотрим пример задачи, которую не решить без использования знаний про четверти.
Пример (ЕГЭ):
((0;-) (frac) ()) — четвертая четверть Ну и, конечно, мы можем в отрицательную сторону делать обороты, так же как и в положительную. Видео:Как искать точки на тригонометрической окружности.Скачать Тригонометрия простыми словамиОфициальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах». Тригонометрические функции связаны с соотношениями сторон в прямоугольном треугольнике:
Или в виде формул: Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1). Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла. Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB. Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°. Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный. Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов. Значения тригонометрических функций |
0° | 30° | 45° | 60° | 90° | sin | 0 | 1 | √3 | – | ctg | – | √3 | 1 | Принцип повтора знаков тригонометрических функцийУгол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону. В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ. Например, значения тригонометрических функций для углов 270° и -90° равны. Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно. Видео:Алгебра 10 класс. 15 сентября. Числовая окружность #1Скачать Тригонометрический кругУглы в радианахДля математических вычислений тригонометрических функций используются углы не в градусах, а в радианах. Что такое радиан? Угол в радианах равен отношению длины дуги окружности к радиусу. Полный круг в 360° соответствует длине окружности 2 π r. Следовательно 360° в радианах равно 2 π , а 180° равно π радиан. Как преобразовывать градусы в радианы? Нужно значение в градусах разделить на 180° и умножить на π . Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций. Видео:Числовая окружностьСкачать Тригонометрический круг: вся тригонометрия на одном рисункеТригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое. Вот что мы видим на этом рисунке: Видео:Числовая окружность | Алгебра 10 класс #8 | ИнфоурокСкачать А теперь подробно о тригонометрическом круге:Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций. Мы отсчитываем углы от положительного направления оси против часовой стрелки. Полный круг — градусов. Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу . Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу . Всё это легко увидеть на нашем рисунке. Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до : Простым следствием теоремы Пифагора является основное тригонометрическое тождество: Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ). Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы. Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке. Легко заметить, что Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть: где — целое число. То же самое можно записать в радианах: Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению, 🔥 ВидеоТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать Положительные и отрицательные числа. 6 класс.Скачать Числовая окружность на координатной плоскости | Алгебра 10 класс #10 | ИнфоурокСкачать 10 класс - Алгебра - Числовая окружностьСкачать Тригонометрические функции и их знакиСкачать Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать Знаки синуса, косинуса, тангенса ЛекцияСкачать Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать 1. Числовая окружность. 10 классСкачать Алгебра 10 класс Поворот точки вокруг начала координат ЛекцияСкачать 18+ Математика без Ху!ни. Формулы ПриведенияСкачать Знаки тригонометрических функций. 9 класс.Скачать Числовая окружность 10 класс АлимовСкачать Найти знак тригонометрической функции (bezbotvy)Скачать |
---|