Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Четырёхугольник — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), попарно соединяющих эти точки. Различают выпуклые и невыпуклые и звездчатые четырёхугольники. Выпуклым четырехугольником называется четырехугольник, у которого все углы меньше развернутого угла. Четырехугольник, у которого угол больше развернутого называется невыпуклым

Виды четырёхугольников

Параллелограмм — четырёхугольник, у которого все противоположные стороны попарно равны и параллельны;
Прямоугольник — четырёхугольник, у которого все углы прямые;
Ромб — четырёхугольник, у которого все стороны равны;
Квадрат — четырёхугольник, у которого все углы прямые и все стороны равны;
Трапеция — четырёхугольник, у которого две противоположные стороны параллельны;
(Дельтоид — четырёхугольник, у которого две пары смежных сторон равны.)

  • Сумма углов четырёхугольника равна 2 π = 360°.
  • Четырёхугольник можно вписать в окружность тогда и только тогда, когда сумма противоположных углов равна 180° (). См. также теорема Птолемея.
  • Четырёхугольник является описанным около окружности тогда и только тогда, когда суммы длин противоположных сторон равны ()
  • Формула Эйлера: учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумму квадратов его диагоналей.
  • Средние линии четырёхугольника и отрезок, соединяющий середины его диагоналей, пересекаются в одной точке и делятся ею пополам.
  • Четыре отрезка, каждый из которых соединяет вершину четырёхугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в центроиде четырёхугольника и делятся им в отношении 3:1, считая от вершин.
  • Две противоположные стороны четырёхугольника перпендикулярны тогда и только тогда, когда сумма квадратов двух других противоположных сторон равна сумме квадратов диагоналей.
  • Диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов противоположных сторон равны.
  • Средние линии четырёхугольника равны тогда и только тогда, когда равны суммы квадратов его противоположных сторон.

Теорема Вариньона
Четырёхугольник, вершины которого совпадают с серединами сторон произвольного четырёхугольника, является параллелограммом, стороны которого параллельны диагоналям исходного четырёхугольника.
или сокращённо
Середины сторон произвольного четырёхугольника — вершины параллелограмма
Доказательство
Проведём диагональ AC. Отрезки EF и GH будут средними линиями треугольников Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого. По теореме о средней линии, отрезки будут параллельны диагонали, а, значит, и друг другу. Повторив аналогичные рассуждения для диагонали BD, получаем, что противоположные стороны четырёхугольника EFGH параллельны, и, по определению, это — параллелограм.
Доказательство, что площадь параллелограмма равна половине площади исходного четырехугольника: Пусть диагональ Четырехугольник все углы которого меньше развернутогопроходит внутри четырёхугольника. Тогда площадь треугольника Четырехугольник все углы которого меньше развернутогоравна Четырехугольник все углы которого меньше развернутого, где Четырехугольник все углы которого меньше развернутого— высота треугольника Четырехугольник все углы которого меньше развернутого, проведённая из вершины Четырехугольник все углы которого меньше развернутого. Аналогично, площадь треугольника Четырехугольник все углы которого меньше развернутогоравна Четырехугольник все углы которого меньше развернутого. Тогда площадь всего четырёхугольника равна Четырехугольник все углы которого меньше развернутого. Но Четырехугольник все углы которого меньше развернутого— это сумма расстояний до прямой Четырехугольник все углы которого меньше развернутогоот точек Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого, то есть в точности высота параллелограмма Четырехугольник все углы которого меньше развернутого. А поскольку сторона Четырехугольник все углы которого меньше развернутогопараллелограмма вдвое меньше Четырехугольник все углы которого меньше развернутого, то и площадь параллелограмма равна половине площади Четырехугольник все углы которого меньше развернутого,

Теорема Эйлера

в любом четырехугольнике сумма квадратов сторон равна сумме квадратов диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналями
Четырехугольник все углы которого меньше развернутого
Четырехугольник все углы которого меньше развернутого
Следствие: Сумма квадратов длин равна диагоналей параллелограмма равна сумме квадратов длин его сторон

Теорема Птолемея
Для любого выпуклого четырёхугольника ABCD вписанного в окружность, сумма произведений длин противоположных сторон равна произведению длин диагоналей AB*DC+BC*AD=BD*AC
Четырехугольник все углы которого меньше развернутогоЧетырехугольник все углы которого меньше развернутого

Теорема Брахмагупты(площадь вписанного в окружность четырёхугольника)

Если a, b, c, d – длины сторон четырёхугольника, Четырехугольник все углы которого меньше развернутого– его полупериметр, а α – сумма его противоположных углов, то площадь Sчетырёхугольника равна
Четырехугольник все углы которого меньше развернутого.
В качестве α здесь можно взять сумму любой из двух пар противоположных углов, результат от этого не зависит. В случае четырёхугольника, вписанного в окружность, эта формула принимает более простой вид:
Четырехугольник все углы которого меньше развернутого;
это равенство и называется формулой Брахмагупты. Если четырёхугольник имеет и описанную и вписанную окружности, то формула становится совсем короткой: Четырехугольник все углы которого меньше развернутого.
Четырехугольник все углы которого меньше развернутого
Четырехугольник все углы которого меньше развернутого

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Четырехугольник все углы которого меньше развернутого

Параллелограммом называют четырёхугольник, у которого каждые 2 противолежащие (противоположные) стороны параллельны .

Свойства параллелограмма.
Теорема 1.
Теорема 2.
Теорема 3.

Диагонали параллелограмма точкой пересечения делятся пополам.

Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону п араллелограмм а прямую, содержащую противолежащую сторону.

Признаки параллелограмма
Теорема 1.

Если в четырёхугольнике каждые две противолежащие стороны равны, то этот четырёхугольник — параллелограмм.
Признаки параллелограмма. Теорема 1. Доказательство

Теорема 2.

Если в четырёхугольнике две противолежащие стороны равны и параллельны, то этот четырёхугольник — параллелограмм.
Признаки параллелограмма. Теорема 2. Доказательство

Теорема 3.

Если в четырёхугольнике диагонали точкой пересечения делятся пополам,то этот четырехугольник — параллелограмм.
Признаки параллелограмма. Теорема 3. Доказательство

Дополнительные задачи
Прямоугольник
Определение.

Прямоугольником называют параллелограмм , у которого все углы прямые.

Теорема 1.
Признаки прямоугольника:
Теорма 1.

Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.

Теорма 2.

Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.

Видео:№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.

Основные правила математики. Геометрия. Теоремы, определения. 8 класс: 0 комментариев

Приветствую, прикольный вебсайт наконец-то нашел.
Зацепило наполнение содержимым.
Спасибо за качественный материал!

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Четырехугольник и его элементы — определение и вычисление с доказательствами и примерами решения

Содержание:

Четырехугольником называют фигуру, состоящую из четырех точек и четырех последовательно соединяющих их отрезков.

Никакие три из этих точек не должны лежать на одной прямой, а соединяющие их отрезки не должны иметь никаких других общих точек, кроме данных.

Любой четырехугольник ограничивает некоторую часть плоскости, являющуюся внутренней областью четырехугольника.

На рисунке 1 изображен четырехугольник Четырехугольник все углы которого меньше развернутого

Вершины четырехугольника, являющиеся концами его стороны, называют соседними, несоседние вершины называют противолежащими. На рисунке 1 вершины Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого— соседние, Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого— противолежащие.

Четырехугольник все углы которого меньше развернутого

Стороны четырехугольника, имеющие общую вершину, называют соседними, а не имеющие общей вершины — противолежащими. На рис. 1 стороны Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого— соседние, Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого— противолежащие.

Сумму длин всех сторон четырехугольника называют его периметром. Периметр обозначают буквой Четырехугольник все углы которого меньше развернутогоНапример, периметр четырехугольника Четырехугольник все углы которого меньше развернутогоможно обозначить как Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Отрезки, соединяющие противолежащие вершины четырехугольника, называют диагоналями четырехугольника.

На рисунке 2 отрезки Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого— диагонали четырехугольника Четырехугольник все углы которого меньше развернутогоКаждый четырехугольник имеет две диагонали.

Углами четырехугольника Четырехугольник все углы которого меньше развернутогоназывают углы Четырехугольник все углы которого меньше развернутого Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого(рис. 1). Углы четырехугольника называют противолежащими, если их вершины — противолежащие вершины четырехугольника, и соседними, если их вершины — соседние вершины четырехугольника. На рисунке 1 углы Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого— противолежащие, Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого— соседние.

Один из углов четырехугольника может быть больше развернутого угла. Например, на рисунке 3 в четырехугольнике Четырехугольник все углы которого меньше развернутогоугол Четырехугольник все углы которого меньше развернутогобольше развернутого. Такой четырехугольник называют невыпуклым. Если все углы четырехугольника меньше 180°, его называют выпуклым. Диагонали выпуклого четырехугольника пересекаются (рис. 2), а невыпуклого не пересекаются (рис. 4).

Четырехугольник все углы которого меньше развернутого

Теорема (о сумме углов четырехугольника). Сумма углов четырехугольника равна 360°.

Доказательство:

Пусть Четырехугольник все углы которого меньше развернутого— некоторый четырехугольник. Проведем в нем диагональ Четырехугольник все углы которого меньше развернутого(рис. 5). Тогда Четырехугольник все углы которого меньше развернутогоЧетырехугольник все углы которого меньше развернутогоУчитывая, что Четырехугольник все углы которого меньше развернутого(как сумма углов Четырехугольник все углы которого меньше развернутого Четырехугольник все углы которого меньше развернутого(как сумма углов Четырехугольник все углы которого меньше развернутогобудем иметь: Четырехугольник все углы которого меньше развернутогоЧетырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Пример:

Найдите углы четырехугольника, если их градусные меры относятся как 3 : 10 : 4 : 1. Выпуклым или невыпуклым является этот четырехугольник?

Решение:

Пусть углы четырехугольника равны Четырехугольник все углы которого меньше развернутогоЧетырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогоИмеем уравнение Четырехугольник все углы которого меньше развернутогооткуда Четырехугольник все углы которого меньше развернутогоСледовательно, углы четырехугольника равны Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогоТак как один из углов четырехугольника больше 180°, то этот четырехугольник — невыпуклый.

Ответ. 60°, 200°, 80°, 20°; невыпуклый.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Четырехугольник и его элементы

На рисунке 1 отрезки АВ и ВС имеют только одну общую точку В, которая является концом каждого из них. Такие отрезки называют соседними. На рисунке 2 каждые два отрезка являются соседними.

Четырехугольник все углы которого меньше развернутого

Отрезки АВ и CD на рисунке 3 не являются соседними.
Четырехугольник все углы которого меньше развернутого

Рассмотрим фигуру, состоящую из четырех точек А, В, С, D и четырех отрезков АВ, ВС, CD, DA таких, что никакие два соседних отрезка не лежат на одной прямой и никакие два несоседних отрезка не имеют общих точек (рис. 4, а).

Четырехугольник все углы которого меньше развернутого

Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 4, б зеленым цветом. Эту часть плоскости вместе с отрезками АВ, ВС, CD и DA называют четырехугольником. Точки А, В, С, D называют вершинами четырехугольника, а отрезки АВ, ВС, CD, DA — сторонами четырехугольника.

На рисунке 5 изображены фигуры, состоящие из четырех отрезков АВ, ВС, CD, DA и части плоскости, которую они ограничивают. Однако эти фигуры не являются четырехугольниками. Поясните почему.

Четырехугольник все углы которого меньше развернутого

Стороны четырехугольника, являющиеся соседними отрезками, называют соседними сторонами четырехугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника. Стороны, не являющиеся соседними, называют противолежащими сторонами четырехугольника. Несоседние вершины называют противолежащими вершинами четырехугольника.

На рисунке 6 изображен четырехугольник, в котором, например, стороны MQ и MN являются соседними, а стороны NP и MQ — противолежащими. Вершины Q и Р — соседние, а вершины М и Р — противолежащие.

Четырехугольник все углы которого меньше развернутого

Четырехугольник называют и обозначают по его вершинам. Например, на рисунке 4, б изображен четырехугольник ABCD, а на рисунке 6 — четырехугольник MNPQ. В обозначении четырехугольника буквы, стоящие рядом, соответствуют соседним вершинам четырехугольника. Например, четырехугольник, изображенный на рисунке 6, можно обозначить еще и так: PQMN, или MQPN, или NPQM и т. д.

Сумму длин всех сторон четырехугольника называют периметром четырехугольника.

Отрезок, соединяющий противолежащие вершины четырехугольника, называют диагональю. На рисунке 7 отрезки АС и BD — диагонали четырехугольника АВСD.

Четырехугольник все углы которого меньше развернутого

Углы ABC, BCD, CDA, DAB (рис. 8) называют углами четырехугольника ABCD. В этом четырехугольнике каждый из них меньше развернутого угла. Такой четырехугольник называют выпуклым. Однако существуют четырехугольники, в которых не все углы меньше развернутого. Например, на рисунке 9 угол В четырехугольника ABCD больше 180°. Такой четырехугольник называют невыпуклым 1 .

Углы АВС и ADC называют противолежащими углами четырехугольника ABCD (рис. 8, 9). Также противолежащими являются углы BAD и BCD.

Четырехугольник все углы которого меньше развернутого

Теорема 1.1. Сумма углов четырехугольника равна 360°.

Доказательство. Проведем в четырехугольнике диагональ, разбивающую его на два треугольника. Например, на рисунке 10

1 Более подробно с понятием «выпуклость» вы ознакомитесь в п. 19.

Четырехугольник все углы которого меньше развернутого

это диагональ BD. Тогда сумма углов четырехугольника ABCD равна сумме углов треугольников ABD и CBD. Поскольку сумма углов треугольника равна 180°, то сумма углов четырехугольника равна 360°.

Следствие. В четырехугольнике только один из углов может быть больше развернутого.

Докажите это свойство самостоятельно.

Пример:

Докажите, что длина любой стороны четырехугольника меньше суммы длин трех остальных его сторон.

Четырехугольник все углы которого меньше развернутого

Решение:

Рассмотрим произвольный четырехугольник ABCD (рис. 11). Покажем, например, что АВ 1 В учебнике задачи на построение не обязательны для рассмотрения.

В треугольнике АВС известны две стороны АВ и ВС и угол В между ними. Следовательно, этот треугольник можно построить. Теперь можем от лучей АВ и СВ отложить углы, равные углам четырехугольника при вершинах А и С.

Проведенный анализ показывает, как строить искомый четырехугольник.

Строим треугольник по двум данным сторонам четырехугольника и углу между ними. На рисунке 12 это треугольник АВС. Далее от лучей АВ и СВ откладываем два известных угла четырехугольника. Два построенных луча пересекаются в точке D. Четырехугольник ABCD — искомый.

Параллелограмм. Свойства параллелограмма

Определение. Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.

На рисунке 19 изображен параллелограмм ABCD. По определению параллелограмма имеем: Четырехугольник все углы которого меньше развернутого

Рассмотрим некоторые свойства параллелограмма.
Четырехугольник все углы которого меньше развернутого

Теорема 2.1. Противолежащие стороны параллелограмма равны.

Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что АВ = CD и ВС = AD.

Проведем диагональ АС. Докажем, что треугольники АВС и CDA равны (рис. 20).

В этих треугольниках сторона АС — общая, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, углы 3 и 4 равны как накрест лежащие при параллельных прямых АВ и CD и секущей АС. Следовательно, треугольники АВС и CDA равны по второму признаку равенства треугольников. Отсюда АВ = CD и ВС = AD.

Теорема 2.2. Противолежащие углы параллелограмма равны.

Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что Четырехугольник все углы которого меньше развернутого
При доказательстве предыдущей теоремы было установлено, что Четырехугольник все углы которого меньше развернутого(рис. 20). Отсюда Четырехугольник все углы которого меньше развернутогоИз равенства углов 1 и 2 и равенства углов 3 и 4 следует, что Четырехугольник все углы которого меньше развернутогоСледовательно, Четырехугольник все углы которого меньше развернутого

Теорема 2.3. Диагонали параллелограмма точкой пересечения делятся пополам.

Четырехугольник все углы которого меньше развернутого

Доказательство. На рисунке 21 изображен параллелограмм ABCD, диагонали которого пересекаются в точке О. Докажем, что АО = ОС и ВО = OD.

Рассмотрим треугольники AOD и СОВ.
Имеем: Четырехугольник все углы которого меньше развернутогоравны как накрест лежащие при параллельных прямых AD и ВС и секущих АС и BD соответственно. Из теоремы 2.1 получаем: AD = ВС.

Следовательно, треугольники AOD и СОВ равны по второму признаку равенства треугольников. Отсюда АО = ОС, ВО = OD.

Определение. Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.

На рисунке 22 каждый из отрезков AF, QE, ВМ, PN, СК является высотой параллелограмма ABCD.

Из курса геометрии 7 класса вы знаете, что все точки одной из двух параллельных прямых равноудалены от другой прямой. Поэтому AF = QE и ВМ = PN = СК.

Говорят, что высоты ВМ, СК, PN проведены к сторонам ВС и AD, а высоты AF, QE — к сторонам АВ и CD.

Четырехугольник все углы которого меньше развернутого

Пример №1

Докажите, что прямые, содержащие высоты треугольника, переcекаются в одной точке.

Решение:

Через каждую вершину данного треугольника АВС проведем прямую, параллельную противолежащей стороне. Получим треугольник Четырехугольник все углы которого меньше развернутого(рис. 23).

Четырехугольник все углы которого меньше развернутого

Из построения следует, что четырехугольники Четырехугольник все углы которого меньше развернутого— параллелограммы. Отсюда Четырехугольник все углы которого меньше развернутогоСледовательно, точка А является серединой отрезка Четырехугольник все углы которого меньше развернутого

Поскольку прямые Четырехугольник все углы которого меньше развернутогопараллельны, то высота АН треугольника АВС перпендикулярна отрезку Четырехугольник все углы которого меньше развернутогоТаким образом, прямая АН — серединный перпендикуляр стороны Четырехугольник все углы которого меньше развернутоготреугольника Четырехугольник все углы которого меньше развернутогоАналогично можно доказать, что прямые, содержащие две другие высоты треугольника АВС, являются серединными перпендикулярами сторон Четырехугольник все углы которого меньше развернутоготреугольника Четырехугольник все углы которого меньше развернутого

Так как серединные перпендикуляры сторон треугольника пересекаются в одной точке, то утверждение теоремы доказано.

Пример №2

Биссектриса тупого угла параллелограмма делит его сторону в отношении 2 : 1, считая от вершины острого угла. Найдите стороны параллелограмма, если его периметр равен 60 см.

Решение:

Пусть биссектриса тупого угла В параллелограмма ABCD (рис. 24) пересекает сторону AD в точке М. По условию AM : MD = 2 : 1.

Четырехугольник все углы которого меньше развернутого

Углы ABM и CBM равны по условию.
Углы СВМ и AM В равны как накрест лежащие при параллельных прямых ВС и AD и секущей ВМ.

Тогда Четырехугольник все углы которого меньше развернутогоСледовательно, треугольник ВАМ равнобедренный, отсюда АВ = AM.

Пусть MD = х см, тогда АВ =АМ = 2х см, AD = Зх см. Поскольку противолежащие стороны параллелограмма равны, то его периметр равен 2 (АВ + AD). Учитывая, что по условию периметр параллелограмма равен 60 см, получаем:

2 (2х + Зх) = 60;
х = 6.

Следовательно, АВ = 12 см, AD = 18 см.

Ответ: 12 см, 18 см.

Признаки параллелограмма

Определение параллелограмма позволяет среди четырехугольников распознавать параллелограммы. Этой же цели служат следующие три теоремы, которые называют признаками параллелограмма.

Теорема 3.1 (обратная теореме 2.1). Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.

Доказательство. На рисунке 29 изображен четырехугольник ABCD, в котором АВ = CD и ВС = AD. Докажем, что четырехугольник ABCD — параллелограмм.

Четырехугольник все углы которого меньше развернутого

Проведем диагональ АС. Треугольники АВС и CDA равны по третьему признаку равенства треугольников. Отсюда Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогоУглы 1 и 3 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, Четырехугольник все углы которого меньше развернутогоАналогично из равенства Четырехугольник все углы которого меньше развернутогоследует, что Четырехугольник все углы которого меньше развернутого

Таким образом, в четырехугольнике ABCD каждые две противолежащие стороны параллельны, поэтому этот четырехугольник — параллелограмм.

Теорема 3.2. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Доказательство. На рисунке 30 изображен четырехугольник ABCD, в котором ВС = AD и Четырехугольник все углы которого меньше развернутогоДокажем, что четырехугольник ABCD — параллелограмм.

Проведем диагональ АС. В треугольниках АВС и CDA имеем: ВС = AD по условию, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, а сторона АС общая. Следовательно, треугольники АВС и CDA равны по первому признаку равенства треугольников. Отсюда АВ = CD. Значит, в четырехугольнике ABCD каждые две противолежащие стороны равны. Поэтому по теореме 3.1 четырехугольник ABCD — параллелограмм.

Теорема 3.3 (обратная теореме 2.3). Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Четырехугольник все углы которого меньше развернутого

Доказательство. На рисунке 31 изображен четырехугольник ABCD, в котором диагонали АС и BD пересекаются в точке О, причем АО = ОС и ВО = OD. Докажем, что четырехугольник ABCD — параллелограмм.

Поскольку углы ВОС и DOA равны как вертикальные, АО = ОС и ВО = OD, то треугольники ВОС и DOA равны по первому признаку равенства треугольников. Отсюда ВС = AD и Четырехугольник все углы которого меньше развернутогоУглы 1 и 2 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, Четырехугольник все углы которого меньше развернутого

Таким образом, в четырехугольнике ABCD две противолежащие стороны равны и параллельны. По теореме 3.2 четырехугольник ABCD — параллелограмм.

Вы знаете, что треугольник можно однозначно задать его сторонами, то есть задача построения треугольника по трем сторонам имеет единственное решение. Иначе обстоит дело с параллелограммом. На рисунке 32 изображены параллелограммы Четырехугольник все углы которого меньше развернутого Четырехугольник все углы которого меньше развернутогостороны которых равны, то есть Четырехугольник все углы которого меньше развернутого Четырехугольник все углы которого меньше развернутогоОднако очевидно, что сами параллелограммы не равны.

Сказанное означает, что если четыре рейки скрепить так, чтобы образовался параллелограмм, то полученная конструкция не будет жесткой.

Четырехугольник все углы которого меньше развернутого

Это свойство параллелограмма широко используют на практике. Благодаря его подвижности лампу можно устанавливать в удобное для работы положение, а раздвижную решетку — отодвигать на нужное расстояние в дверном проеме (рис. 33).

Четырехугольник все углы которого меньше развернутого

На рисунке 34 изображена схема механизма, являющегося частью паровой машины. При увеличении скорости вращения оси шары отдаляются от нее под действием центробежной силы, тем самым поднимая заслонку, регулирующую количество пара. Механизм назван параллелограммом Уатта в честь изобретателя первой универсальной паровой машины.

Пример №3

Докажите, что если в четырехугольнике каждые два противолежащих угла равны, то этот четырехугольник — параллелограмм.

Четырехугольник все углы которого меньше развернутого

Решение:

На рисунке 35 изображен четырехугольник ABCD, в котором Четырехугольник все углы которого меньше развернутогоДокажем, что четырехугольник ABCD — параллелограмм.

По теореме о сумме углов четырехугольника (теорема 1.1) Четырехугольник все углы которого меньше развернутогоУчитывая, что Четырехугольник все углы которого меньше развернутогополучим: Четырехугольник все углы которого меньше развернутого

Поскольку углы А и В — односторонние углы при прямых AD и ВС и секущей АВ, а их сумма равна 180°, то Четырехугольник все углы которого меньше развернутого
Аналогично доказываем, что Четырехугольник все углы которого меньше развернутого

Следовательно, четырехугольник ABCD — параллелограмм.

Необходимо и достаточно

Из курса геометрии 7 класса вы узнали, что большинство теорем состоят из двух частей: условия (то, что дано) и заключения (то, что требуется доказать).

Если утверждение, выражающее условие, обозначить буквой А, а утверждение, выражающее заключение, — буквой В, то формулировку теоремы можно изобразить следующей схемой: если А, то В.
Например, теорему 2.3 можно сформулировать так:

Четырехугольник все углы которого меньше развернутого

Тогда теорему 3.3, обратную теореме 2.3, можно сформулировать так:

Четырехугольник все углы которого меньше развернутого

Часто в повседневной жизни в своих высказываниях мы пользуемся словами «необходимо», «достаточно». Приведем несколько примеров.

  • Для того чтобы уметь решать задачи, необходимо знать теоремы.
  • Если вы на математической олимпиаде правильно решили все предложенные задачи, то этого достаточно для того, чтобы занять первое место.

Употребление слов «необходимо» и «достаточно» тесно связано с теоремами.

Четырехугольник все углы которого меньше развернутого

Условие А является достаточным для заключения В. Вместе с тем делимость числа нацело на 5 (утверждение В) необходима для делимости числа нацело на 10 (утверждение А).

Приведем еще один пример:
Четырехугольник все углы которого меньше развернутого

В этой теореме утверждение А является достаточным условием для утверждения В, то есть для того, чтобы два угла были равны, достаточно, чтобы они были вертикальными. В этой же теореме утверждение В является необходимым условием для утверждения А, то есть для того, чтобы два угла были вертикальными, необходимо, чтобы они были равны. Отметим, что утверждение В не является достаточным условием для утверждения А. Действительно, если два угла равны, то это совсем не означает, что они вертикальные.

Итак, в любой теореме вида если А, то В утверждение А является достаточным для утверждения В, а утверждение В — необходимым для утверждения А.

Если справедлива не только теорема если А, то В, но и обратная теорема если В, то А, то А является необходимым и достаточным условием для В, а В — необходимым и достаточным условием для А.

Например, теоремы 3.3 и 2.3 являются взаимно обратными. На языке «необходимо — достаточно» этот факт можно сформулировать так: для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали точкой пересечения делились пополам.

Подчеркнем, что если в теореме есть слова «необходимо и достаточно», то она объединяет две теоремы: прямую и обратную (прямой теоремой может быть любая из двух теорем, тогда другая будет обратной). Следовательно, доказательство такой теоремы должно состоять из двух частей: доказательств прямой и обратной теорем. Теорему, объединяющую прямую и обратную теоремы, называют критерием.

Иногда вместо «необходимо и достаточно» говорят «тогда и только тогда». Например, взаимно обратные теоремы 2.1 и 3.1 можно объединить в следующий критерий:

  • четырехугольник является параллелограммом тогда и только тогда, когда каждые две его противолежащие стороны равны.

Сформулируйте самостоятельно теорему 2.2 и ключевую задачу п. 3 в виде теоремы-критерия.

Прямоугольник

Параллелограмм — это четырехугольник, однако очевидно, что не каждый четырехугольник является параллелограммом. В этом случае говорят, что параллелограмм — это отдельный вид четырехугольника. Рисунок 42 иллюстрирует этот факт.

Четырехугольник все углы которого меньше развернутого

Существуют также отдельные виды параллелограммов.

Определение. Прямоугольником называют параллелограмм, у которого все углы прямые.

На рисунке 43 изображен прямоугольник ABCD.
Из определения следует, что прямоугольник имеет все свойства параллелограмма. В прямоугольнике:

  • противолежащие стороны равны;
  • диагонали точкой пересечения делятся пополам.

Однако прямоугольник имеет свои особые свойства, которыми не обладает параллелограмм, отличный от прямоугольника. Так, из определения следует, что все углы прямоугольника равны. Еще одно свойство прямоугольника выражает следующая теорема.

Теорема 4.1. Диагонали прямоугольника равны.

Доказательство. На рисунке 44 изображен прямоугольник ABCD. Докажем, что его диагонали АС и BD равны.
В прямоугольных треугольниках ABD и DCA катеты АВ и DC равны, а катет AD общий. Поэтому треугольники ABD и DCA равны по двум катетам. Отсюда BD = АС.

Четырехугольник все углы которого меньше развернутого

Определение прямоугольника позволяет среди параллелограммов распознавать прямоугольники. Этой же цели служат следующие две теоремы, которые называют признаками прямоугольника.

Теорема 4.2. Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.

Докажите эту теорему самостоятельно.

Теорема 4.3. Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.

Доказательство. На рисунке 45 изображен параллелограмм ABCD, диагонали АС и BD которого равны. Докажем, что параллелограмм ABCD — прямоугольник.

Рассмотрим треугольники ABD и DCА. У них АВ = CD, BD =АС, AD — общая сторона. Следовательно, эти треугольники равны по третьему признаку равенства треугольников. Отсюда Четырехугольник все углы которого меньше развернутогоЭти углы являются односторонними при параллельных прямых АВ и DC и секущей AD. Таким образом, Четырехугольник все углы которого меньше развернутогоТогда Четырехугольник все углы которого меньше развернутогоПоэтому по теореме 4.2 параллелограмм ABCD — прямоугольник.

Ромб

Вы уже знаете, что прямоугольник — это отдельный вид параллелограмма. Познакомимся еще с одним видом параллелограмма — ромбом.

Определение. Ромбом называют параллелограмм, у которого все стороны равны.

На рисунке 47 изображен ромб ABCD.
Из определения следует, что ромб имеет все свойства параллелограмма. В ромбе:

  • противолежащие углы равны;
  • диагонали точкой пересечения делятся пополам.

Четырехугольник все углы которого меньше развернутого

Однако ромб имеет и свои особые свойства.

Теорема 5.1. Диагонали ромба перпендикулярны и являются биссектрисами его углов.

Доказательство. На рисунке 48 изображен ромб ABCD, диагонали которого пересекаются в точке О. Докажем, что Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого

Поскольку по определению ромба все его стороны равны, то треугольник АВС равнобедренный (АВ = ВС). По свойству диагоналей параллелограмма АО = ОС. Тогда отрезок ВО является медианой треугольника АВС, а значит, и высотой и биссектрисой этого треугольника. Следовательно, Четырехугольник все углы которого меньше развернутого

Распознавать ромбы среди параллелограммов позволяют не только определение ромба, но и следующие две теоремы, которые называют признаками ромба.

Теорема 5.2. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.

Теорема 5.3. Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.

Докажите эти теоремы самостоятельно.

Квадрат

Определение. Квадратом называют прямоугольник, у которого все стороны равны.

На рисунке 50 изображен квадрат ABCD.

Четырехугольник все углы которого меньше развернутого

Из приведенного определения следует, что квадрат — это ромб, у которого все углы равны. Значит, квадрат является отдельным видом и прямоугольника, и ромба. Это иллюстрирует рисунок 51. Поэтому квадрат обладает всеми свойствами прямоугольника и ромба. Отсюда следует, что:

  • все углы квадрата прямые;
  • диагонали квадрата равны, перпендикулярны и являются биссектрисами его углов.

Средняя линия треугольника

Определение. Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.

На рисунке 56 отрезки MN, NE, ЕМ — средние линии треугольника АВС.

Четырехугольник все углы которого меньше развернутого

Теорема 7.1. Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.

Доказательство. Пусть MN — средняя линия треугольника АВС (рис. 57). Докажем, что Четырехугольник все углы которого меньше развернутого

На прямой MN отметим точку Е так, что MN = NE (рис. 57). Соединим отрезком точки Е и С. Поскольку точка N является серединой отрезка ВС, то BN = NC. Углы 1 и 2 равны как вертикальные. Следовательно, треугольники MBN и ECN равны по первому признаку равенства треугольников. Отсюда Четырехугольник все углы которого меньше развернутогоУчитывая, что AM = ВМ, получим: ЕС = AM. Углы 3 и 4 являются накрест лежащими при прямых АВ и ЕС и секущей ВС. Тогда Четырехугольник все углы которого меньше развернутого

Таким образом, в четырехугольнике АМЕС стороны AM и ЕС параллельны и равны. Следовательно, по теореме 3.2 четырехугольник АМЕС является параллелограммом. Отсюда Четырехугольник все углы которого меньше развернутогото есть Четырехугольник все углы которого меньше развернутого

Также ME = АС. Поскольку Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Пример №4

Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.

Решение:

В четырехугольнике ABCD точки М, N, К и Р — середины сторон АВ, ВС, CD и AD соответственно (рис. 58).
Отрезок MN — средняя линия треугольника АВС. По свойству средней линии треугольника Четырехугольник все углы которого меньше развернутого
Отрезок РК — средняя линия треугольника ADC. По свойству средней линии треугольника Четырехугольник все углы которого меньше развернутого

Поскольку Четырехугольник все углы которого меньше развернутогото Четырехугольник все углы которого меньше развернутого
Из равенств Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогополучаем: Четырехугольник все углы которого меньше развернутого
Следовательно, в четырехугольнике MNKP стороны MN и РК равны и параллельны, поэтому четырехугольник MNKP — параллелограмм.

Трапеция

Определение. Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Каждый из четырехугольников, изображенных на рисунке 62, является трапецией.

Четырехугольник все углы которого меньше развернутого

Параллельные стороны трапеции называют основаниями, а непараллельные — боковыми сторонами (рис. 63).

Четырехугольник все углы которого меньше развернутого

В трапеции ABCD Четырехугольник все углы которого меньше развернутогоуглы Аи D называют углами при основании AD, а углы В и С — углами при основании ВС.

Определение. Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.

На рисунке 64 каждый из отрезков ВМ, EF, DK, PQ является высотой трапеции ABCD. Длины этих отрезков равны расстоянию между параллельными прямыми ВС и AD. Поэтому ВМ = EF = DK = PQ.

На рисунке 65 изображена трапеция ABCD, у которой боковые стороны АВ и CD равны. Такую трапецию называют равнобокой или равнобедренной.

Если боковая сторона трапеции является ее высотой, то такую трапецию называют прямоугольной (рис. 66).

Четырехугольник все углы которого меньше развернутого

Трапеция — это отдельный вид четырехугольника. Связь между четырехугольниками и их отдельными видами показана на рисунке 67.

Определение. Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

На рисунке 68 отрезок MN — средняя линия трапеции ABCD.

Теорема 8.1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.

Четырехугольник все углы которого меньше развернутого

Доказательство. Пусть MN — средняя линия трапеции ABCD (рис. 69). Докажем, что Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Проведем прямую BN и точку ее пересечения с прямой AD обозначим буквой Е.

Поскольку точка N — середина отрезка CD, то CN = ND. Углы 1 и 2 равны как вертикальные, а углы 3 и 4 равны как накрест лежащие при параллельных прямых ВС и АЕ и секущей CD. Следовательно, треугольники BCN и EDN равны по второму признаку равенства треугольников. Отсюда ВС = DE и BN = NE. Тогда отрезок MN — средняя линия треугольника АВЕ. Из этого следует, что Четырехугольник все углы которого меньше развернутогото есть Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогоИмеем: Четырехугольник все углы которого меньше развернутого

Пример №5 (свойства равнобокой трапеции)

Докажите, что в равнобокой трапеции:

  1. углы при каждом основании равны;
  2. диагонали равны;
  3. высота трапеции, проведенная из вершины тупого угла, делит основание трапеции на два отрезка, меньший из которых равен половине разности оснований, а больший — половине суммы оснований (средней линии трапеции).

Решение:

Рассмотрим равнобокую трапецию ABCD (АВ = CD).
1) Проведем высоты ВМ и СК (рис. 70). Поскольку АВ = CD и ВМ = СК, то прямоугольные треугольники АМВ и DKC равны по катету и гипотенузе. Тогда Четырехугольник все углы которого меньше развернутого

Имеем: Четырехугольник все углы которого меньше развернутогоСледовательно, Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

2) Рассмотрим треугольники ACD и DBA (рис. 71).

Имеем: АВ = CD, AD — общая сторона, углы BAD и CDA равны как углы при основании равнобокой трапеции. Следовательно, треугольники ACD и DBA равны по двум сторонам и углу между ними. Тогда АС = BD.
3) В четырехугольнике ВМКС (рис. 70) Четырехугольник все углы которого меньше развернутогоугол ВМК прямой. Следовательно, этот четырехугольник является прямоугольником. Отсюда МК = ВС.
Из равенства треугольников АМВ и DKC следует, что Четырехугольник все углы которого меньше развернутогоТогда Четырехугольник все углы которого меньше развернутогоЧетырехугольник все углы которого меньше развернутого

Центральные и вписанные углы

Определение. Центральным углом окружности называют угол с вершиной в центре окружности.

На рисунке 76 угол АОВ — центральный. Стороны этого угла пересекают окружность в точках А и В. Эти точки делят окружность на две дуги, выделенные на рисунке 76 разным цветом.

Точки А и В называют концами дуги, они принадлежат каждой из выделенных дуг. Каждую из этих дуг можно обозначить так: Четырехугольник все углы которого меньше развернутого(читают: «дуга АВ»).

Однако по записи Четырехугольник все углы которого меньше развернутогоневозможно отличить дуги на рисунке 76. Если на какой-нибудь из двух дуг отметить точку (на рисунке 77 это точка М), то понятно, что обозначение Четырехугольник все углы которого меньше развернутогоотносится к «синей» дуге. Если на одной из двух дуг АВ отмечена точка, то договоримся, что обозначение Четырехугольник все углы которого меньше развернутогоотносится к дуге, которой эта точка не принадлежит (на рисунке 77 это «зеленая» дуга).

Четырехугольник все углы которого меньше развернутого

Дуга АВ принадлежит центральному углу АОВ (рис. 77). В этом случае говорят, что центральный угол АОВ опирается на дугу АВ.

Каждая дуга окружности, как и вся окружность, имеет градусную меру. Градусную меру всей окружности считают равной 360°. Если центральный угол MON опирается на дугу MN (рис. 78), то градусную меру дуги MN считают равной градусной мере угла MON и записывают: Четырехугольник все углы которого меньше развернутого(читают: «градусная мера дуги MN равна градусной мере угла MON). Градусную меру дуги MEN (рис. 78) считают равной 360° — Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

На рисунке 79 изображена окружность, в которой проведены два перпендикулярных диаметра АВ и CD.

Тогда Четырехугольник все углы которого меньше развернутого Четырехугольник все углы которого меньше развернутогоКаждую из дуг АСВ и ADB называют полуокружностью. На рисунке 79 полуокружностями являются также дуги CAD и CBD.

Четырехугольник все углы которого меньше развернутого

О хорде, соединяющей концы дуги, говорят, что хорда стягивает дугу. На рисунке 80 хорда АВ стягивает каждую из дуг АВ и АКВ.

Любая хорда стягивает две дуги, сумма градусных мер которых равна 360°.

Определение. Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.

На рисунке 81 угол АВС — вписанный. Дуга АС принадлежит этому углу, а дуга АВС — не принадлежит. В таком случае говорят, что вписанный угол АВС опирается на дугу АС. Также можно сказать, что вписанный угол АВС опирается на хорду АС.

Теорема 9.1. Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство. О На рисунке 81 угол АВС вписанный.

Докажем, что Четырехугольник все углы которого меньше развернутого
Рассмотрим три случая расположения центра О окружности относительно вписанного угла АВС.

Случай 1. Центр О принадлежит одной из сторон угла, например стороне ВС (рис. 82).
Проведем радиус ОА. Центральный угол АОС — внешний угол равнобедренного треугольника АВО (стороны ОА и ОВ равны как радиусы). Тогда Четырехугольник все углы которого меньше развернутогоОднако Четырехугольник все углы которого меньше развернутогоОтсюда Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Случай 2. Центр О принадлежит углу, однако не принадлежит ни одной из его сторон (рис. 83).
Проведем диаметр ВК. Согласно доказанному Четырехугольник все углы которого меньше развернутогоЧетырехугольник все углы которого меньше развернутого
Имеем:
Четырехугольник все углы которого меньше развернутого

Случай 3. Центр О не принадлежит углу (рис. 84).
Для третьего случая проведите доказательство самостоятельно.

Четырехугольник все углы которого меньше развернутого

Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 85).

Следствие 2. Вписанный угол, опирающийся на диаметр (полуокружность), — прямой (рис. 86).

Докажите эти свойства самостоятельно.

Пример №6 (свойство угла между касательной и хордой).

Отрезок АВ — хорда окружности с центром О (рис. 87). Через точку А проведена касательная MN. Докажите, что Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Решение:

Проведем диаметр AD (рис. 87). Тогда угол В равен 90° как вписанный, опирающийся на диаметр AD. В прямоугольном треугольнике ABD Четырехугольник все углы которого меньше развернутогоПоскольку MN — касательная, то Четырехугольник все углы которого меньше развернутогоТогда Четырехугольник все углы которого меньше развернутогоПолучаем, что Четырехугольник все углы которого меньше развернутого
Следовательно, Четырехугольник все углы которого меньше развернутого
Имеем:
Четырехугольник все углы которого меньше развернутого

Пример №7

Постройте касательную к данной окружности, проходящую через данную точку, лежащую вне окружности.

Решение:

На рисунке 88 изображены окружность с центром О и точка М, лежащая вне этой окружности.

Пусть X — такая точка окружности, что прямая MX является касательной (рис. 88). Тогда угол МХО прямой. Следовательно, его можно рассматривать как вписанный в окружность с диаметром МО.

Проведенный анализ показывает, как провести построение.

Построим отрезок МО и разделим его пополам (рис. 89). Пусть точка К — его середина. Построим окружность радиуса КО с центром К. Обозначим точки пересечения построенной и данной окружностей буквами Е и F. Тогда каждая из прямых ME и MF является искомой касательной.

Четырехугольник все углы которого меньше развернутого

Действительно, угол МЕО равен 90° как вписанный угол, опирающийся на диаметр МО. Отрезок ОЕ — радиус данной окружности. Тогда по признаку касательной прямая ME — искомая касательная.

Описанная и вписанная окружности четырехугольника

Определение. Окружность называют описанной около четырехугольника, если она проходит через все его вершины.

На рисунке 103 изображена окружность, описанная около четырехугольника ABCD. В этом случае также говорят, что четырехугольник вписан в окружность.

Четырехугольник все углы которого меньше развернутого

Теорема 10.1. Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.

Доказательство. Пусть четырехугольник ABCD вписан в окружность (рис. 103). Докажем, что Четырехугольник все углы которого меньше развернутого
Поскольку углы А и С являются вписанными, то Четырехугольник все углы которого меньше развернутого
Имеем: Четырехугольник все углы которого меньше развернутого
Аналогично можно показать, что Четырехугольник все углы которого меньше развернутого

Вы знаете, что около любого треугольника можно описать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя описать окружность около параллелограмма, отличного от прямоугольника. Распознавать четырехугольники, около которых можно описать окружность, позволяет следующая теорема.

Теорема 10.2 (обратная теореме 10.1). Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.

Доказательство. Рассмотрим четырехугольник ABCD, в котором Четырехугольник все углы которого меньше развернутогоДокажем, что около него можно описать окружность.

Предположим, что около этого четырехугольника нельзя описать окружность. Опишем окружность около треугольника ABD. По предположению точка С не принадлежит этой окружности. Поэтому возможны два случая.

Случай 1. Точка С лежит вне описанной окружности треугольника ABD (рис. 104).

Пусть сторона ВС пересекает окружность в точке Четырехугольник все углы которого меньше развернутогоЧетырехугольник Четырехугольник все углы которого меньше развернутоговписан в окружность. Тогда по теореме 10.1 получаем, что Четырехугольник все углы которого меньше развернутогоНо по условию Четырехугольник все углы которого меньше развернутогоОтсюда Четырехугольник все углы которого меньше развернутогоОднако это равенство выполняться не может, так как по свойству внешнего угла треугольникаЧетырехугольник все углы которого меньше развернутого

Итак, точка С не может лежать вне окружности, описанной около треугольника ABD.
Четырехугольник все углы которого меньше развернутого

Случай 2. Точка С лежит внутри описанной окружности треугольника ABD (рис. 105). Рассуждая аналогично, можно показать, что точка С не может лежать внутри рассматриваемой окружности. Убедитесь в этом самостоятельно.

Таким образом, предположив, что точка С не принадлежит окружности, описанной около треугольника ABD, мы получили противоречие.

Теорему 10.2 можно рассматривать как признак принадлежности четырех точек одной окружности.

Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех его вершин (центр описанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения серединных перпендикуляров двух соседних сторон четырехугольника.

Определение. Окружность называют вписанной в четырехугольник, если она касается всех его сторон.

На рисунке 106 изображена окружность, вписанная в четырехугольник ABCD. В этом случае также говорят, что четырехугольник описан около окружности.

Четырехугольник все углы которого меньше развернутого

Теорема 10.3. Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.

Доказательство. Пусть четырехугольник ABCD описан около окружности (рис. 107). Докажем, что АВ + CD = ВС + AD.

Точки М, N, Р, К — точки касания окружности со сторонами четырехугольника.

Поскольку отрезки касательных, проведенных к окружности через одну точку, равны, то АК =АМ, ВМ = BN, CN = СР, DP = DK. Пусть АК = а, ВМ = b, CN = с, DP = d.

Тогда АВ + CD = a + b + c + d,
ВС + AD = b + c + a + d.

Следовательно, АВ + CD = ВС + AD.

Вы знаете, что в любой треугольник можно вписать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя вписать окружность в прямоугольник, отличный от квадрата. Распознавать четырехугольники, в которые можно вписать окружность, позволяет следующая теорема.

Теорема 10.4. Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.

Доказательство. Рассмотрим выпуклый четырехугольник ABCD, в котором АВ + CD = ВС + AD. Докажем, что в него можно вписать окружность.

Пусть биссектрисы углов А и В пересекаются в точке О (рис. 108). Тогда точка О равноудалена от сторон АВ, ВС и AD. Следовательно, существует окружность с центром в точке О, которая касается этих трех сторон.

Четырехугольник все углы которого меньше развернутого

Предположим, что эта окружность не касается стороны CD. Тогда возможны два случая.

Случай 1. Сторона CD не имеет общих точек с построенной окружностью.
Проведем касательную Четырехугольник все углы которого меньше развернутогопараллельно стороне CD (рис. 108). Четырехугольник Четырехугольник все углы которого меньше развернутогоописан около окружности. Тогда по теореме 10.3 получаем, чтоЧетырехугольник все углы которого меньше развернутого

Однако по условию
Четырехугольник все углы которого меньше развернутого

Вычтем из равенства (2) равенство (1):
Четырехугольник все углы которого меньше развернутого

Отсюда имеем: Четырехугольник все углы которого меньше развернутого

Это равенство противоречит утверждению, доказанному в ключевой задаче п. 1.

Итак, сторона CD должна иметь общие точки с рассматриваемой окружностью.

Случай 2. Сторона CD имеет две общие точки с построенной окружностью.

Рассуждая аналогично, можно показать, что сторона CD не может иметь две общие точки с построенной окружностью. Убедитесь в этом самостоятельно.

Таким образом, предположив, что построенная окружность не касается стороны CD, мы получили противоречие.

Если четырехугольник описан около окружности, то существует точка, равноудаленная от всех его сторон (центр вписанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения биссектрис двух соседних углов этого четырехугольника.

Пример №8 (признак принадлежности четырех точек одной окружности).

Точки А, М, N, В таковы, что Четырехугольник все углы которого меньше развернутогопричем точки M и N лежат в одной полуплоскости относительно прямой АВ. Докажите, что точки А, М, N, В лежат на одной окружности.

Решение:

Пусть Четырехугольник все углы которого меньше развернутогоОколо треугольника АМВ опишем окружность (рис. 109). Пусть С — произвольная точка окружности, не принадлежащая дуге АМВ. Тогда четырехугольник АСВМ вписан в окружность. Отсюда Четырехугольник все углы которого меньше развернутогоИмеем: Четырехугольник все углы которого меньше развернутогоСледовательно, по теореме 10.2 около четырехугольника ACBN можно описать окружность. Поскольку около треугольника АВС можно описать только одну окружность, то этой окружности принадлежат как точка М, так и точка N.

Сумма углов четырехугольника

  • Сумма углов четырехугольника равна 360°.

Параллелограмм

  • Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.

Свойства параллелограмма

  • Противолежащие стороны параллелограмма равны.
  • Противолежащие углы параллелограмма равны.
  • Диагонали параллелограмма точкой пересечения делятся пополам.

Высота параллелограмма

  • Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.

Признаки параллелограмма

  • Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.
  • Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
  • Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Прямоугольник

  • Прямоугольником называют параллелограмм, у которого все углы прямые.

Особое свойство прямоугольника

  • Диагонали прямоугольника равны.

Признаки прямоугольника

  • Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.
  • Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.

Ромб

  • Ромбом называют параллелограмм, у которого все стороны равны.

Особое свойство ромба

  • Диагонали ромба перпендикулярны и являются биссектрисами его углов.

Признаки ромба

  • Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.
  • Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.

Квадрат

  • Квадратом называют прямоугольник, у которого все стороны равны.

Средняя линия треугольника

  • Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника

  • Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.

Трапеция

  • Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Высота трапеции

  • Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.

Средняя линия трапеции

  • Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

Свойство средней линии трапеции

  • Средняя линия трапеции параллельна основаниям и равна половине их суммы.

Центральный угол окружности

  • Центральным углом окружности называют угол с вершиной в центре окружности.

Вписанный угол окружности

  • Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.

Градусная мера вписанного угла окружности

  • Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Свойства вписанных углов

  • Вписанные углы, опирающиеся на одну и ту же дугу, равны.
  • Вписанный угол, опирающийся на диаметр (полуокружность), — прямой.

Окружность, описанная около четырехугольника

  • Окружность называют описанной около четырехугольника, если она проходит через все его вершины.

Свойство четырехугольника, вписанного в окружность

  • Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.

Признак четырехугольника, около которого можно описать окружность

  • Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.

Окружность, вписанная в четырехугольник

  • Окружность называют вписанной в четырехугольник, если она касается всех его сторон.

Свойство окружности, описанной около четырехугольника

  • Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.

Признак четырехугольника, в который можно вписать окружность

  • Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.

Вписанные и описанные четырехугольники

Четырехугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около четырехугольника (рис. 92).

Теорема 1 (свойство углов вписанного четырехугольника). Сумма противолежащих углов вписанного четырехугольника равна 180°.

Доказательство:

Пусть в окружность с центром Четырехугольник все углы которого меньше развернутоговписан четырехугольник Четырехугольник все углы которого меньше развернутого(рис. 92). Тогда Четырехугольник все углы которого меньше развернутого Четырехугольник все углы которого меньше развернутого(по теореме о вписанном угле).

Поэтому Четырехугольник все углы которого меньше развернутогоТогда

Четырехугольник все углы которого меньше развернутого

Следствие 1. Если около трапеции можно описать окружность, то трапеция равнобокая.

Доказательство:

Пусть трапеция Четырехугольник все углы которого меньше развернутоговписана в окружность, Четырехугольник все углы которого меньше развернутого(рис. 93). Тогда Четырехугольник все углы которого меньше развернутогоНо в трапеции Четырехугольник все углы которого меньше развернутогоПоэтому Четырехугольник все углы которого меньше развернутогоСледовательно, Четырехугольник все углы которого меньше развернутого— равнобокая трапеция (по признаку равнобокой трапеции).

Четырехугольник все углы которого меньше развернутого

Как известно из курса геометрии 7 класса, около любого треугольника можно описать окружность. Для четырехугольников это не так.

Теорема 2 (признак вписанного четырехугольника). Если в четырехугольнике сумма двух противолежащих углов равна 180°, то около него можно описать окружность.

Доказательство:

Пусть в четырехугольнике Четырехугольник все углы которого меньше развернутогоЧетырехугольник все углы которого меньше развернутогоПроведем через точки Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогоокружность. Докажем (методом от противного), что вершина Четырехугольник все углы которого меньше развернутогочетырехугольника также будет лежать на этой окружности.

1) Допустим, что вершина Четырехугольник все углы которого меньше развернутоголежит внутри круга (рис. 94). Продолжим Четырехугольник все углы которого меньше развернутогодо пересечения с окружностью в точке Четырехугольник все углы которого меньше развернутогоТогда Четырехугольник все углы которого меньше развернутого(по условию) и Четырехугольник все углы которого меньше развернутого(по свойству углов вписанного четырехугольника). Тогда Четырехугольник все углы которого меньше развернутогоНо Четырехугольник все углы которого меньше развернутого— внешний, a Четырехугольник все углы которого меньше развернутого— не смежный с ним внутренний угол треугольника Четырехугольник все углы которого меньше развернутогоПоэтому Четырехугольник все углы которого меньше развернутогодолжен быть больше, чем Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Пришли к противоречию, значит, наше предположение ошибочно, и точка Четырехугольник все углы которого меньше развернутогоне может лежать внутри круга.

2) Аналогично можно доказать, что вершина Четырехугольник все углы которого меньше развернутогоне может лежать вне круга.

3) Следовательно, точка Четырехугольник все углы которого меньше развернутоголежит на окружности, ограничивающей круг (рис. 92), а значит около четырехугольника Четырехугольник все углы которого меньше развернутогоможно описать окружность.

Следствие 1. Около любого прямоугольника можно описать окружность.

Следствие 2. Около равнобокой трапеции можно описать окружность.

Заметим, что, как и в треугольнике, центром описанной около четырехугольника окружности является точка пересечения серединных перпендикуляров к его сторонам, поскольку она равноудалена от всех его вершин. Например, в прямоугольнике такой точкой является точка пересечения диагоналей.

Четырехугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в четырехугольник (рис. 95).

Четырехугольник все углы которого меньше развернутого

Теорема 3 (свойство сторон описанного четырехугольника). В описанном четырехугольнике суммы противолежащих сторон равны.

Доказательство:

Пусть четырехугольник Четырехугольник все углы которого меньше развернутого— описанный, Четырехугольник все углы которого меньше развернутого— точки касания (рис. 96). По свойству отрезков касательных, проведенных из одной точки к окружности, Четырехугольник все углы которого меньше развернутого

Ha рисунке 96 равные отрезки обозначены одинаковым цветом.

Тогда Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Следовательно, Четырехугольник все углы которого меньше развернутого

Как известно из курса геометрии 7 класса, в любой треугольник можно вписать окружность. Для четырехугольников это не так.

Теорема 4 (признак описанного четырехугольника). Если в четырехугольнике суммы противолежащих сторон равны, то в этот четырехугольник можно вписать окружность.

Доказательство этой теоремы является достаточно громоздким, поэтому его не приводим.

Следствие. В любой ромб можно вписать окружность.

Как и в треугольнике, центром окружности, вписанной в четырехугольник, является точка пересечения биссектрис его углов. Так как диагонали ромба являются биссектрисами его углов, то центр вписанной в ромб окружности — точка пересечения диагоналей.

Теорема Фалеса

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство:

Пусть параллельные прямые Четырехугольник все углы которого меньше развернутого Четырехугольник все углы которого меньше развернутогопересекают стороны угла с вершиной Четырехугольник все углы которого меньше развернутого(рис. 101), при этом Четырехугольник все углы которого меньше развернутогоДокажем, что Четырехугольник все углы которого меньше развернутого

1) Проведем через точки Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогопрямые Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогопараллельные прямой Четырехугольник все углы которого меньше развернутого(по условию), Четырехугольник все углы которого меньше развернутого(как соответственные углы при параллельных прямых Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутого(как соответственные углы при параллельных прямых Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогоПоэтому

Четырехугольник все углы которого меньше развернутого(по стороне и двум прилежащим к ней углам), а значит, Четырехугольник все углы которого меньше развернутого(как соответственные стороны равных треугольников).

Четырехугольник все углы которого меньше развернутого

2) Четырехугольник Четырехугольник все углы которого меньше развернутого— параллелограмм (по построению). Поэтому Четырехугольник все углы которого меньше развернутогоАналогично Четырехугольник все углы которого меньше развернутого-параллелограмм, поэтому Четырехугольник все углы которого меньше развернутого

Таким образом, Четырехугольник все углы которого меньше развернутогоследовательно Четырехугольник все углы которого меньше развернутогочто и требовалось доказать.

Следствие. Параллельные прямые, пересекающие две данные прямые и отсекающие на одной из них равные отрезки, отсекают равные отрезки и на другой прямой.

С помощью линейки без делений по теореме Фалеса возможно разделить отрезок на любое количество равных частей.

Пример №9

Разделите отрезок Четырехугольник все углы которого меньше развернутогона б равных частей.

Решение:

1) Пусть Четырехугольник все углы которого меньше развернутого— данный отрезок (рис. 102). Проведем произвольный луч Четырехугольник все углы которого меньше развернутогои отложим на нем циркулем последовательно 6 отрезков: Четырехугольник все углы которого меньше развернутого

2) Через точки Четырехугольник все углы которого меньше развернутогои Четырехугольник все углы которого меньше развернутогопроведем прямую.

3) Через точки Четырехугольник все углы которого меньше развернутого— с помощью угольника и линейки проведем прямые, параллельные прямой Четырехугольник все углы которого меньше развернутогоТогда по теореме Фалеса эти прямые разделят отрезок АВ на 6 равных частей: Четырехугольник все углы которого меньше развернутого

Четырехугольник все углы которого меньше развернутого

Фалес Милетский — древнегреческий математик и астроном. По давней традиции его считают одним из так называемых семи мудрецов света, ведь он был одним из самых выдающихся математиков своего времени.

В молодые годы любознательный юноша отправился путешествовать по Египту с целью познакомиться с египетской культурой и Фалес не только быстро изучил то, что в то время уже было известно египетским ученым, но и сделал ряд собственных научных открытий. Он самостоятельно определил высоту египетских пирамид по длине их тени, чем очень удивил египетского фараона Амазиса, а вернувшись на родину, создал в Милети философскую школу.

По мнению историков Фалес был первым, кто познакомил греков с геометрией и стал первым греческим астрономом. Он предсказал солнечное затмение, произошедшее 28 мая 585 года до н. э.

На гробнице Фалеса высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».

Четырехугольник все углы которого меньше развернутого

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Четырехугольники и окружность
  • Параллелограмм, его свойства и признаки
  • Площадь параллелограмма
  • Прямоугольник и его свойства
  • Сумма углов треугольника
  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎥 Видео

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Математика 2 класс (Урок№33 - Угол. Виды углов: прямой, острый, тупой.)Скачать

Математика 2 класс (Урок№33 - Угол. Виды углов: прямой, острый, тупой.)

Виды четырёхугольниковСкачать

Виды четырёхугольников

Геометрия Один из углов четырехугольника в 2 раза меньше второго угла, на 20 меньше третьего и на 40Скачать

Геометрия Один из углов четырехугольника в 2 раза меньше второго угла, на 20 меньше третьего и на 40

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Виды угловСкачать

Виды углов

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

4 класс, 52 урок, Развернутый угол. Смежные углыСкачать

4 класс, 52 урок, Развернутый угол. Смежные углы

Красивая задача про углы четырехугольникаСкачать

Красивая задача про углы четырехугольника

7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Сравнение углов. Виды углов. Чертежный треугольник. 5 класс.Скачать

Сравнение углов. Виды углов. Чертежный треугольник. 5 класс.

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Измерение угла с помощью транспортираСкачать

Измерение угла с помощью транспортира

Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать

Уроки геометрии. Чему равна сумма углов четырехугольника?

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Четырехугольник, его элементы. Сумма углов четырехугольника (8 класс. Геометрия)Скачать

Четырехугольник, его элементы. Сумма углов четырехугольника (8 класс. Геометрия)
Поделиться или сохранить к себе: