Четырехугольник с двумя попарно равными сторонами

math4school.ru

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Содержание
  1. Четырёхугольники
  2. Основные определения и свойства
  3. Описанные четырёхугольники
  4. Вписанные четырёхугольники
  5. Параллелограмм
  6. Прямоугольник
  7. Квадрат
  8. Трапеция
  9. Дельтоид
  10. Ортодиагональные четырёхугольники
  11. Параллелограмм: свойства и признаки
  12. Определение параллелограмма
  13. Свойства параллелограмма
  14. Признаки параллелограмма
  15. Четырехугольник — виды и свойства с примерами решения
  16. Внутренние и внешние углы четырехугольника
  17. Сумма внутренних углов выпуклого четырёхугольника
  18. Сумма внешних углов выпуклого четырёхугольника
  19. Параллелограмм
  20. Параллелограмм и его свойства
  21. Признаки параллелограмма
  22. Прямоугольник
  23. Признак прямоугольника
  24. Ромб и квадрат
  25. Свойства ромба
  26. Трапеция
  27. Средняя линия треугольника
  28. Средняя линия трапеции
  29. Координаты середины отрезка
  30. Теорема Пифагора
  31. Справочный материал по четырёхугольнику
  32. Пример №1
  33. Признаки параллелограмма
  34. Пример №2 (признак параллелограмма).
  35. Прямоугольник
  36. Пример №3 (признак прямоугольника).
  37. Ромб. Квадрат
  38. Пример №4 (признак ромба)
  39. Теорема Фалеса. Средняя линия треугольника
  40. Пример №5
  41. Пример №6
  42. Трапеция
  43. Пример №7 (свойство равнобедренной трапеции).
  44. Центральные и вписанные углы
  45. Пример №8
  46. Вписанные и описанные четырёхугольники
  47. Пример №9
  48. Пример №10
  49. 🎦 Видео

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Четырёхугольники

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Основные определения и свойства

Четырехугольник с двумя попарно равными сторонами

Четырёхугольником называется фигура, которая состоит из четырёх точек (вершин) и четырёх отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырёхугольник называется выпуклым, если он расположен в одной полуплоскости относительно прямой, которая содержит любую из его сторон.

Сумма углов выпуклого четырёхугольника равна 360°:

Не существует четырёхугольников, у которых все углы острые или все углы тупые.

Каждый угол четырёхугольника всегда меньше суммы трёх остальных углов:

Каждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон:

Площадь произвольного выпуклого четырёхугольника равна:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Диагоналями четырёхугольника называются отрезки, соединяющие его противолежащие вершины.

Диагонали выпуклого четырёхугольника пересекаются, а невыпуклого – нет.

Площадь произвольного выпуклого четырёхугольника:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонами

Если M , N , P , Q – середины сторон выпуклого четырёхугольника ABCD , а R , S – середины его диагоналей, то четырёхугольники MNPQ , MRPS , NSQR являются параллелограммами и называются параллелограммами Вариньона.

Форма и размеры параллелограммов Вариньона связаны с формой и размерами данного четырёхугольника ABCD . Так MNPQ – прямоугольник, если диагонали четырёхугольника ABCD перпендикулярны; MNPQ – ромб, если диагонали четырёхугольника ABCD равны; MNPQ – квадрат, если диагонали четырёхугольника ABCD перпендикулярны и равны;

Четырехугольник с двумя попарно равными сторонами

Отрезки MP , NQ и RS называются первой, второй и третьей средними линиями выпуклого четырёхугольника.

В параллелограмме, и только в нём, середины диагоналей совпадают, и потому третья средняя линия вырождается в точку. Для других четырёхугольников средние линии – отрезки.

Все средние линии четырёхугольника пересекаются в одной точке и делятся ею пополам:

MG=GP , NG=GQ , RG=GS .

Сумма квадратов средних линий четырёхугольника равна четверти суммы квадратов всех его сторон и диагоналей:

MP 2 + NQ 2 + RS 2 = ¼ (AB 2 +BC 2 +CD 2 +AD 2 +AC 2 +BD 2 ).

Если β – угол между первой и второй средними линиями четырёхугольника, то его площадь:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Равными плитками, которые имеют форму произвольного, не обязательно выпуклого, четырёхугольника можно замостить плоскость так, чтобы не было наложений плиток друг на друга и не осталось непокрытых участков плоскости.

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Описанные четырёхугольники

Четырехугольник с двумя попарно равными сторонами

Четырёхугольник называется описанным около окружности (описанным), если существует такая окружность, которая касается всех его сторон, тогда сама окружность называется вписанной.

Четырёхугольник является описанным тогда и только тогда, кода суммы его противолежащих сторон равны:

Для сторон описанного четырёхугольника и радиуса вписанной в него окружности верно:

Площадь описанного четырёхугольника:

где r – радиус вписанной окружности, p – полупериметр четырёхугольника.

Площадь описанного четырёхугольника:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Центр вписанной в четырёхугольник окружности является точкой пересечения биссектрис всех четырёх углов этого четырёхугольника.

Точки касания вписанной окружности отсекают равные отрезки от углов четырёхугольника:

AK = AN , BK = BL , CL = CM , DM = DN .

Если O – центр окружности, вписанной в четырёхугольник ABCD, то

∠AOB+∠COD = ∠BOC+∠AOD =180°.

Для описанного четырёхугольника ABCD со сторонами AB = a , BC = b , CD = c и AD = d верны соотношения:

Четырехугольник с двумя попарно равными сторонами

Видео:10 класс, 8 урок, Углы с сонаправленными сторонамиСкачать

10 класс, 8 урок, Углы с сонаправленными сторонами

Вписанные четырёхугольники

Четырехугольник с двумя попарно равными сторонами

Четырёхугольник называется вписанным в окружность (вписанным), если существует окружность, проходящая через все его вершины, тогда сама окружность называется описанной около четырёхугольника.

Выпуклый четырёхугольник является описанным тогда и только тогда, когда сумма его противолежащих углов равна 180°:

Центр описанной около четырёхугольника окружности является точкой пересечения всех четырёх серединных перпендикуляров сторон этого четырёхугольника.

Четырехугольник с двумя попарно равными сторонами

Первая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:

Четырехугольник с двумя попарно равными сторонами

Вторая теорема Птолемея. Выпуклый четырёхугольник тогда и только тогда является вписанным, когда выполняется равенство:

Четырехугольник с двумя попарно равными сторонами

Радиус окружности, описанной около четырёхугольника:

Четырехугольник с двумя попарно равными сторонами

Площадь вписанного четырёхугольника:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Диагонали выпуклого четырёхугольника разбивают каждый его угол на два угла. Углы, опирающиеся на одну сторону, называются связанными углами.

Выпуклый четырёхугольник является вписанным тогда и только тогда, когда у него есть хотя бы одна пара равных связанных углов.

У вписанного четырёхугольника любые два связанных угла равны.

Четырехугольник с двумя попарно равными сторонами

Если четырёхугольник одновременно является описанным и вписанным, то его площадь:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Для радиусов описанной и вписанной окружностей данного четырёхугольника и расстояния между центрами этих окружностей выполняется соотношение:

Четырехугольник с двумя попарно равными сторонами

Видео:№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:Скачать

№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:

Параллелограмм

Четырехугольник с двумя попарно равными сторонами

Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны:

У параллелограмма противолежащие стороны равны и противолежащие углы равны:

Сумма любых двух соседних углов параллелограмма равна 180°:

∠A +∠ B =∠ B +∠ C =∠ C +∠ D =∠ A +∠ D =180°.

Четырехугольник с двумя попарно равными сторонами

Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам:

Каждая диагональ делит параллелограмм на два равных треугольника:

∠ ABC =∠ CDA ; ∠ ABD =∠ CDB .

Две диагонали параллелограмма делят его на четыре равновеликих треугольника:

Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:

e 2 +f 2 = a 2 +b 2 +a 2 +b 2 = 2(a 2 +b 2 ).

  • Если у четырёхугольника противолежащие стороны попарно равны, то этот четырёхугольник – параллелограмм.
  • Если у четырёхугольника две противолежащие стороны равны и параллельны, то этот четырёхугольник – параллелограмм.
  • Четырёхугольник, диагонали которого в точке пересечения делятся пополам – параллелограмм.
  • Если у четырёхугольника противолежащие углы попарно равны, то этот четырёхугольник – параллелограмм.
Четырехугольник с двумя попарно равными сторонами

Высотой параллелограмма называется перпендикуляр, проведённый из вершины параллелограмма к неприлежащей стороне:

Площадь параллелограмма можно определить:

  • через его сторону и высоту, проведённую к ней:
  • через две его стороны и угол между ними:
Четырехугольник с двумя попарно равными сторонами

Ромбом называется параллелограмм, у которого все стороны равны:

Диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов:

∠ ABD =∠ CBD =∠ ADB =∠ CDB ; ∠ BAC =∠ DAC =∠ BCA =∠ DCA .

Четырехугольник с двумя попарно равными сторонами

В любой ромб можно вписать окружность с центром в точке пересечения его диагоналей.

Радиус окружности, вписанной в ромб, можно вычислить:

Четырехугольник с двумя попарно равными сторонами

  • через диагонали ромба и сторону:

Четырехугольник с двумя попарно равными сторонами

  • через отрезки, на которые делит сторону ромба точка касания:

Четырехугольник с двумя попарно равными сторонами

Площадь ромба можно определить:

Четырехугольник с двумя попарно равными сторонами

  • через сторону и угол ромба:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

  • через сторону и радиус вписанной окружности:

Четырехугольник с двумя попарно равными сторонами

Видео:В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.Скачать

В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.

Прямоугольник

Четырехугольник с двумя попарно равными сторонами

Прямоугольником называется параллелограмм, у которого все углы прямые:

Четырехугольник с двумя попарно равными сторонами

Диагонали прямоугольника равны и точкой пересечения делятся на четыре равных отрезка:

Площадь прямоугольника можно определить:

  • через диагонали и угол между ними:
Четырехугольник с двумя попарно равными сторонами

Около любого прямоугольника можно описать окружность с центром в точке пересечения его диагоналей и радиусом, который равен половине диагонали:

Видео:Виды четырёхугольниковСкачать

Виды четырёхугольников

Квадрат

Четырехугольник с двумя попарно равными сторонами

Квадрат – это прямоугольник, у которого все стороны равны:

Четырехугольник с двумя попарно равными сторонами

Диагонали квадрата равны и перпендикулярны.

Сторона и диагональ квадрата связаны соотношениями:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

У квадрата центры вписанной и описанной окружностей совпадают и находятся в точке пересечения его диагоналей.

Радиус описанной окружности:

Четырехугольник с двумя попарно равными сторонами

Радиус вписанной окружности:

Четырехугольник с двумя попарно равными сторонами

Видео:Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать

Геометрия 10 класс (Урок№2 - Четырехугольники.)

Трапеция

Четырехугольник с двумя попарно равными сторонами

Трапецией называется четырёхугольник у которого только две противолежащие стороны параллельны:

Параллельные стороны называются основаниями трапеции, непараллельные – боковыми сторонами.

Высота трапеции – перпендикуляр, проведённый из произвольной точки одного основания трапеции к прямой, содержащей другое основание трапеции.

Четырехугольник с двумя попарно равными сторонами

Средней линией (первой средней линией) трапеции называется отрезок, который соединяет середины боковых сторон данной трапеции:

Средняя линия трапеции параллельна её основаниям и равна их полусумме:

Четырехугольник с двумя попарно равными сторонами

При продолжении до пересечения боковых сторон трапеции образуются два подобных треугольника с коэффициентом подобия, равным отношению основ:

Δ AED ∼ Δ BEC , k = AD / BC .

Треугольники, образованные основами и отрезками диагоналей подобны с коэффициентом подобия, равным отношению основ:

Δ AОD ∼ Δ CОВ , k = AD / BC .

Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны:

Четырехугольник с двумя попарно равными сторонами

Отрезок, соединяющий середины оснований (вторая средняя линия) трапеции, проходит через точку пересечения диагоналей, а его продолжение – через точку пересечения продолжений боковых сторон:

Отрезок, соединяющий середины диагоналей (третья средняя линия) трапеции, параллелен основаниям и равен их полуразности:

Четырехугольник с двумя попарно равными сторонами

В трапецию можно вписать окружность, если сумма её основ равна сумме боковых сторон:

Центром вписанной в трапецию окружности является точка пересечения биссектрис внутренних углов трапеции.

В трапецию АВСD с основаниями AD и BC можно вписать окружность тогда и только тогда, когда выполняется хотя бы одно из равенств:

Четырехугольник с двумя попарно равными сторонами

Боковые стороны трапеции видны из центра окружности, вписанной в данную трапецию, под прямым углом:

Радиус вписанной в трапецию окружности можно определить:

Четырехугольник с двумя попарно равными сторонами

  • через отрезки, на которые делится боковая сторона точкой касания:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Равнобокой называется трапеция, у которой боковые стороны равны:

У равнобокой трапеции:

  • углы при основании равны:
  • сумма противолежащих углов равна 180?:

Около трапеции можно описать окружность тогда и только тогда, когда она равнобокая.

Стороны и диагональ равнобокой трапеции связаны соотношением:

Четырехугольник с двумя попарно равными сторонами

Трапеция называется прямоугольной, если одна из её боковых сторон перпендикулярна основаниям.

Четырехугольник с двумя попарно равными сторонами

Площадь трапеции можно определить:

  • через полусумму оснований (первую среднюю линию) и высоту:

Четырехугольник с двумя попарно равными сторонами

  • через диагонали и угол между ними:

Четырехугольник с двумя попарно равными сторонами

Видео:ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.Скачать

ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.

Дельтоид

Четырехугольник с двумя попарно равными сторонами Четырехугольник с двумя попарно равными сторонами

Дельтоид называется четырёхугольник, который имеет две пары равных соседних сторон.

Дельтоид может быть выпуклым или невыпуклым.

Прямые, содержащие диагонали любого дельтоида пересекаются под прямым углом.

В любом дельтоиде углы между соседними неравными сторонами равны.

Площадь любого дельтоида можно определить:

Четырехугольник с двумя попарно равными сторонами

  • через две соседние неравные стороны и угол между ними:
Четырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонами

В любой выпуклый дельтоид можно вписать окружность.

Если выпуклый дельтоид не является ромбом, то существует окружность, касающаяся продолжений всех четырёх сторон данного дельтоида.

Для невыпуклого дельтоида можно построить окружность, касающуюся двух сторон большей длины и продолжений двух меньших сторон, а также окружность, касающуюся двух меньших сторон и продолжений двух сторон большей длины.

Четырехугольник с двумя попарно равными сторонами

Вокруг дельтоида можно описать окружность тогда и только тогда, когда его неравные стороны образуют углы по 90°.

Радиус окружности, описанной около дельтоида можно определить через две его неравные стороны:

Четырехугольник с двумя попарно равными сторонами

Видео:ЧетырехугольникиСкачать

Четырехугольники

Ортодиагональные четырёхугольники

Четырехугольник с двумя попарно равными сторонами

Четырёхугольник называется ортодиагональным, если его диагонали пересекаются под прямым углом.

Четырёхугольник является ортодиагональным тогда и только тогда, когда выполняется одно из условий:

  • для сторон четырёхугольника верно: a²+c² = b²+d ²;
  • для площади четырёхугольника верно: S = ½ef ;
  • параллелограмм Вариньона с вершинами в серединах сторон четырёхугольника является прямоугольником.
Четырехугольник с двумя попарно равными сторонами

Сумма квадратов противолежащих сторон вписанного в окружность ортодиагонального четырёхугольника равна квадрату диаметра описанной окружности:

Четырехугольник с двумя попарно равными сторонами

Ортодиагональный четырёхугольник является описанным около окружности тогда и только тогда, когда произведения его противолежащих сторон равны:

Если ABCD – ортодиагональный четырёхугольник, описанный около окружности с центром в точке О , то верны соотношения:

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Параллелограмм: свойства и признаки

Четырехугольник с двумя попарно равными сторонами

О чем эта статья:

Видео:8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
    Четырехугольник с двумя попарно равными сторонами
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
    Четырехугольник с двумя попарно равными сторонами
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
    Четырехугольник с двумя попарно равными сторонами

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Видео:Красивая задача про углы четырехугольникаСкачать

Красивая задача про углы четырехугольника

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
    Четырехугольник с двумя попарно равными сторонами
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
    Четырехугольник с двумя попарно равными сторонами
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
    Четырехугольник с двумя попарно равными сторонами
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
    Четырехугольник с двумя попарно равными сторонами
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
    Четырехугольник с двумя попарно равными сторонами
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
    Четырехугольник с двумя попарно равными сторонами

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Четырехугольник с двумя попарно равными сторонами

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

    Четырехугольник с двумя попарно равными сторонами

Теорема доказана. Наше предположение верно.

Видео:Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Четырехугольник с двумя попарно равными сторонами

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Четырехугольник с двумя попарно равными сторонами

Шаг 3. Из равенства треугольников также следует:

Четырехугольник с двумя попарно равными сторонами

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Четырехугольник с двумя попарно равными сторонами

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Четырехугольник с двумя попарно равными сторонами

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Четырехугольник с двумя попарно равными сторонами

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Видео:11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Четырехугольник с двумя попарно равными сторонами

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Четырехугольник с двумя попарно равными сторонами

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Четырехугольник с двумя попарно равными сторонами

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Четырехугольник с двумя попарно равными сторонами

Видео:8 класс. Геометрия. Четырехугольник: вершины, стороны, диагонали. Свойства параллелограмма. Урок #1Скачать

8 класс. Геометрия. Четырехугольник: вершины, стороны, диагонали. Свойства параллелограмма. Урок #1

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Четырехугольник с двумя попарно равными сторонамиуглы Четырехугольник с двумя попарно равными сторонамиявляются внешними.

Четырехугольник с двумя попарно равными сторонами

Каждый внутренний угол выпуклого четырёхугольника меньше Четырехугольник с двумя попарно равными сторонамиГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Четырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Четырехугольник с двумя попарно равными сторонамиДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Четырехугольник с двумя попарно равными сторонами

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Четырехугольник с двумя попарно равными сторонами

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Четырехугольник с двумя попарно равными сторонами

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Четырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Четырехугольник с двумя попарно равными сторонами

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Четырехугольник с двумя попарно равными сторонами

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Четырехугольник с двумя попарно равными сторонами

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Четырехугольник с двумя попарно равными сторонами

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Четырехугольник с двумя попарно равными сторонамито параллелограмм Четырехугольник с двумя попарно равными сторонамиявляется ромбом.

Четырехугольник с двумя попарно равными сторонами

Доказательство теоремы 1.

Дано: Четырехугольник с двумя попарно равными сторонамиромб.

Докажите, что Четырехугольник с двумя попарно равными сторонами

Доказательство (словестное): По определению ромба Четырехугольник с двумя попарно равными сторонамиПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Четырехугольник с двумя попарно равными сторонамиравнобедренный. Медиана Четырехугольник с двумя попарно равными сторонами(так как Четырехугольник с двумя попарно равными сторонами), является также и биссектрисой и высотой. Т.е. Четырехугольник с двумя попарно равными сторонамиТак как Четырехугольник с двумя попарно равными сторонамиявляется прямым углом, то Четырехугольник с двумя попарно равными сторонами. Аналогичным образом можно доказать, что Четырехугольник с двумя попарно равными сторонами

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Четырехугольник с двумя попарно равными сторонами

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Четырехугольник с двумя попарно равными сторонами

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Четырехугольник с двумя попарно равными сторонами

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

План доказательства теоремы 2

Дано: Четырехугольник с двумя попарно равными сторонамиравнобедренная трапеция. Четырехугольник с двумя попарно равными сторонами

Докажите: Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Четырехугольник с двумя попарно равными сторонамитогда Четырехугольник с двумя попарно равными сторонамиЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Четырехугольник с двумя попарно равными сторонамипроведем параллельную прямую к прямой Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Четырехугольник с двумя попарно равными сторонамичерез точку Четырехугольник с двумя попарно равными сторонами— середину стороны Четырехугольник с двумя попарно равными сторонамипроведите прямую параллельную Четырехугольник с двумя попарно равными сторонамиКакая фигура получилась? Является ли Четырехугольник с двумя попарно равными сторонамитрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Четырехугольник с двумя попарно равными сторонамиМожно ли утверждать, что Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Доказательство. Пусть дан треугольник Четырехугольник с двумя попарно равными сторонамии его средняя линия Четырехугольник с двумя попарно равными сторонамиПроведём через точку Четырехугольник с двумя попарно равными сторонамипрямую параллельную стороне Четырехугольник с двумя попарно равными сторонамиПо теореме Фалеса, она проходит через середину стороны Четырехугольник с двумя попарно равными сторонамит.е. совпадает со средней линией Четырехугольник с двумя попарно равными сторонамиТ.е. средняя линия Четырехугольник с двумя попарно равными сторонамипараллельна стороне Четырехугольник с двумя попарно равными сторонамиТеперь проведём среднюю линию Четырехугольник с двумя попарно равными сторонамиТ.к. Четырехугольник с двумя попарно равными сторонамито четырёхугольник Четырехугольник с двумя попарно равными сторонамиявляется параллелограммом. По свойству параллелограмма Четырехугольник с двумя попарно равными сторонамиПо теореме Фалеса Четырехугольник с двумя попарно равными сторонамиТогда Четырехугольник с двумя попарно равными сторонамиТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Четырехугольник с двумя попарно равными сторонами

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Четырехугольник с двумя попарно равными сторонами

Доказательство: Через точку Четырехугольник с двумя попарно равными сторонамии точку Четырехугольник с двумя попарно равными сторонамисередину Четырехугольник с двумя попарно равными сторонамипроведём прямую и обозначим точку пересечения со стороной Четырехугольник с двумя попарно равными сторонамичерез Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Четырехугольник с двумя попарно равными сторонамирадиусом 3 единицы. Вычислите значение выражения Четырехугольник с двумя попарно равными сторонамиЕсть ли связь между значением данного выражения и координатой точки Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Четырехугольник с двумя попарно равными сторонамии Четырехугольник с двумя попарно равными сторонамии точка Четырехугольник с двумя попарно равными сторонамикоторая является серединой отрезка Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонамито Четырехугольник с двумя попарно равными сторонамиа отсюда следует, что Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

2) По теореме Фалеса, если точка Четырехугольник с двумя попарно равными сторонамиявляется серединой отрезка Четырехугольник с двумя попарно равными сторонамито на оси абсцисс точка Четырехугольник с двумя попарно равными сторонамиявляется соответственно координатой середины отрезка концы которого находятся в точках Четырехугольник с двумя попарно равными сторонамии Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

3) Координаты середины отрезка Четырехугольник с двумя попарно равными сторонамис концами Четырехугольник с двумя попарно равными сторонамии Четырехугольник с двумя попарно равными сторонамиточки Четырехугольник с двумя попарно равными сторонаминаходятся так:

Четырехугольник с двумя попарно равными сторонами

Убедитесь, что данная формула верна в случае, если отрезок Четырехугольник с двумя попарно равными сторонамипараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Четырехугольник с двумя попарно равными сторонамикак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Четырехугольник с двумя попарно равными сторонами

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Четырехугольник с двумя попарно равными сторонами

Шаг 4. На сторонах другого квадрата отметьте отрезки Четырехугольник с двумя попарно равными сторонамикак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Четырехугольник с двумя попарно равными сторонами

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Четырехугольник с двумя попарно равными сторонами

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Четырехугольник с двумя попарно равными сторонами

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Четырехугольник с двумя попарно равными сторонамито, Четырехугольник с двумя попарно равными сторонами— прямоугольный.

Четырехугольник с двумя попарно равными сторонами

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Четырехугольник с двумя попарно равными сторонамиявляются Пифагоровыми тройками, то и числа Четырехугольник с двумя попарно равными сторонамитакже являются Пифагоровыми тройками.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Четырехугольник с двумя попарно равными сторонами(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Четырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонами

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Четырехугольник с двумя попарно равными сторонами

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Четырехугольник с двумя попарно равными сторонами, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Четырехугольник с двумя попарно равными сторонами

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Четырехугольник с двумя попарно равными сторонами=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Четырехугольник с двумя попарно равными сторонами+ CD (по неравенству треугольника). Тогда Четырехугольник с двумя попарно равными сторонами. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Четырехугольник с двумя попарно равными сторонами. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Четырехугольник с двумя попарно равными сторонами

Решение:

Четырехугольник с двумя попарно равными сторонами(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Четырехугольник с двумя попарно равными сторонами(АВ CD, ВС-секущая), Четырехугольник с двумя попарно равными сторонами(ВС || AD, CD — секущая), Четырехугольник с двумя попарно равными сторонами(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Четырехугольник с двумя попарно равными сторонами

Доказательство. Четырехугольник с двумя попарно равными сторонамипо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Четырехугольник с двумя попарно равными сторонамикак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Четырехугольник с двумя попарно равными сторонами

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Четырехугольник с двумя попарно равными сторонами

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Четырехугольник с двумя попарно равными сторонамипо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Четырехугольник с двумя попарно равными сторонами Четырехугольник с двумя попарно равными сторонамиУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Четырехугольник с двумя попарно равными сторонами

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Четырехугольник с двумя попарно равными сторонами

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Четырехугольник с двумя попарно равными сторонамипо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Четырехугольник с двумя попарно равными сторонамикак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Четырехугольник с двумя попарно равными сторонамиНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Четырехугольник с двумя попарно равными сторонами

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Четырехугольник с двумя попарно равными сторонамипо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Четырехугольник с двумя попарно равными сторонамикак вертикальные. Из равенства треугольников следует: ВС= AD и Четырехугольник с двумя попарно равными сторонамиНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Четырехугольник с двумя попарно равными сторонами

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Четырехугольник с двумя попарно равными сторонами

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Четырехугольник с двумя попарно равными сторонами

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Четырехугольник с двумя попарно равными сторонамиМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Четырехугольник с двумя попарно равными сторонами. Четырехугольник с двумя попарно равными сторонамипо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Четырехугольник с двумя попарно равными сторонами. Поскольку в параллелограмме противоположные углы равны, то: Четырехугольник с двумя попарно равными сторонами. По свойству углов четырёхугольника, Четырехугольник с двумя попарно равными сторонами

Следовательно, Четырехугольник с двумя попарно равными сторонами: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Четырехугольник с двумя попарно равными сторонами

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Четырехугольник с двумя попарно равными сторонами

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Четырехугольник с двумя попарно равными сторонами

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Четырехугольник с двумя попарно равными сторонами

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Четырехугольник с двумя попарно равными сторонами. Четырехугольник с двумя попарно равными сторонами

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Четырехугольник с двумя попарно равными сторонами

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Четырехугольник с двумя попарно равными сторонами(рис. 96). Докажем, что ABCD— ромб. Четырехугольник с двумя попарно равными сторонамипо двум сторонами и углу между ними.

Четырехугольник с двумя попарно равными сторонами

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Четырехугольник с двумя попарно равными сторонамипо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Четырехугольник с двумя попарно равными сторонами

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Четырехугольник с двумя попарно равными сторонами

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Четырехугольник с двумя попарно равными сторонами

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Четырехугольник с двумя попарно равными сторонами

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Четырехугольник с двумя попарно равными сторонами

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Четырехугольник с двумя попарно равными сторонамии Четырехугольник с двумя попарно равными сторонамиПроведите с помощью чертёжного угольника и линейки через точки Четырехугольник с двумя попарно равными сторонамипараллельные прямые, которые пересекут сторону ВС этого угла в точках Четырехугольник с двумя попарно равными сторонамиПри помощи циркуля сравните длины отрезков Четырехугольник с двумя попарно равными сторонамиСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Доказать: Четырехугольник с двумя попарно равными сторонами

Доказательство. Проведём через точки Четырехугольник с двумя попарно равными сторонамипрямые Четырехугольник с двумя попарно равными сторонамипараллельные ВС. Четырехугольник с двумя попарно равными сторонамипо стороне и прилежащим к ней углам. У них Четырехугольник с двумя попарно равными сторонамипо условию, Четырехугольник с двумя попарно равными сторонамикак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Четырехугольник с двумя попарно равными сторонамии Четырехугольник с двумя попарно равными сторонамикак противоположные стороны параллелограммов Четырехугольник с двумя попарно равными сторонами

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Четырехугольник с двумя попарно равными сторонами

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Четырехугольник с двумя попарно равными сторонами

Отложим на луче АС пять равных отрезков: АА,Четырехугольник с двумя попарно равными сторонамиПроведём прямую Четырехугольник с двумя попарно равными сторонами. Через точки Четырехугольник с двумя попарно равными сторонамипроведём прямые, параллельные прямой Четырехугольник с двумя попарно равными сторонами. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Четырехугольник с двумя попарно равными сторонами, так как точки М и N — середины сторон АВ и ВС.

Четырехугольник с двумя попарно равными сторонами

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Четырехугольник с двумя попарно равными сторонами(рис. 122), AD = BD, СЕ= BE.

Четырехугольник с двумя попарно равными сторонами

Доказать: Четырехугольник с двумя попарно равными сторонами

Доказательство. 1) Пусть DE- средняя линия Четырехугольник с двумя попарно равными сторонами. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Четырехугольник с двумя попарно равными сторонами. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Четырехугольник с двумя попарно равными сторонами

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Четырехугольник с двумя попарно равными сторонами

Поэтому Четырехугольник с двумя попарно равными сторонами. КР— средняя линия треугольника ADC. Поэтому КР || АС и Четырехугольник с двумя попарно равными сторонами

Получаем: MN || АС и КР || АС, отсюда MN || КРЧетырехугольник с двумя попарно равными сторонами, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Четырехугольник с двумя попарно равными сторонами

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Четырехугольник с двумя попарно равными сторонами

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Четырехугольник с двумя попарно равными сторонами

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Четырехугольник с двумя попарно равными сторонами= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Четырехугольник с двумя попарно равными сторонами

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Четырехугольник с двумя попарно равными сторонамиno стороне и прилежащим к ней углам. У них CF = FD по условию, Четырехугольник с двумя попарно равными сторонамикак вертикальные, Четырехугольник с двумя попарно равными сторонамивнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Четырехугольник с двумя попарно равными сторонами

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Четырехугольник с двумя попарно равными сторонамиравнобедренный. Поэтому Четырехугольник с двумя попарно равными сторонамисоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Четырехугольник с двумя попарно равными сторонами

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Четырехугольник с двумя попарно равными сторонами

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Четырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонами

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Четырехугольник с двумя попарно равными сторонами— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Четырехугольник с двумя попарно равными сторонами

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Четырехугольник с двумя попарно равными сторонами. По свойству внешнего угла треугольника, Четырехугольник с двумя попарно равными сторонамиЧетырехугольник с двумя попарно равными сторонами— равнобедренный (ОВ= OA = R). Поэтому Четырехугольник с двумя попарно равными сторонамиизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Четырехугольник с двумя попарно равными сторонами

Из доказанного в первом случае следует, что Четырехугольник с двумя попарно равными сторонамиизмеряется половиной дуги AD, a Четырехугольник с двумя попарно равными сторонами— половиной дуги DC. Поэтому Четырехугольник с двумя попарно равными сторонамиизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Четырехугольник с двумя попарно равными сторонами

Четырехугольник с двумя попарно равными сторонами

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Четырехугольник с двумя попарно равными сторонами

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Четырехугольник с двумя попарно равными сторонамикак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Четырехугольник с двумя попарно равными сторонами, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Четырехугольник с двумя попарно равными сторонами

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Четырехугольник с двумя попарно равными сторонами(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Четырехугольник с двумя попарно равными сторонами(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Четырехугольник с двумя попарно равными сторонами

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Четырехугольник с двумя попарно равными сторонами

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Четырехугольник с двумя попарно равными сторонами

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Четырехугольник с двумя попарно равными сторонами

Доказать: Четырехугольник с двумя попарно равными сторонами

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Четырехугольник с двумя попарно равными сторонами

Тогда Четырехугольник с двумя попарно равными сторонами

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Четырехугольник с двумя попарно равными сторонами

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Четырехугольник с двумя попарно равными сторонами

Докажем, что Четырехугольник с двумя попарно равными сторонами. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Четырехугольник с двумя попарно равными сторонами. По свойству равнобокой трапеции, Четырехугольник с двумя попарно равными сторонами

Тогда Четырехугольник с двумя попарно равными сторонамии, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Четырехугольник с двумя попарно равными сторонами

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Четырехугольник с двумя попарно равными сторонами

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Четырехугольник с двумя попарно равными сторонамицентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Четырехугольник с двумя попарно равными сторонамивписанного в окружность. Действительно,

Четырехугольник с двумя попарно равными сторонами

Следовательно, четырёхугольник Четырехугольник с двумя попарно равными сторонами— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Четырехугольник с двумя попарно равными сторонами

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Четырехугольник с двумя попарно равными сторонами

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎦 Видео

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

Диагонали четырехугольника равны 4 и 5.Скачать

Диагонали четырехугольника равны 4 и 5.

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равныСкачать

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равны
Поделиться или сохранить к себе: