Четырехугольник ответ 5 класс

Четырехугольник
Содержание
  1. Определение четырехугольника
  2. Виды четырехугольников
  3. Обозначение четырехугольника
  4. Соседние вершины четырехугольника
  5. Смежные стороны четырехугольника
  6. Простой четырехугольник. Самопересекающийся четырехугольник
  7. Выпуклый четырехугольник
  8. Правильный четырехугольник
  9. Периметр четырехугольника
  10. Угол четырехугольника
  11. Внешний угол четырехугольника
  12. Диагональ четырехугольника
  13. Сумма углов четырехугольника
  14. Сумма внешних углов четырехугольника
  15. Математика. 5 класс
  16. Четырехугольник — виды и свойства с примерами решения
  17. Внутренние и внешние углы четырехугольника
  18. Сумма внутренних углов выпуклого четырёхугольника
  19. Сумма внешних углов выпуклого четырёхугольника
  20. Параллелограмм
  21. Параллелограмм и его свойства
  22. Признаки параллелограмма
  23. Прямоугольник
  24. Признак прямоугольника
  25. Ромб и квадрат
  26. Свойства ромба
  27. Трапеция
  28. Средняя линия треугольника
  29. Средняя линия трапеции
  30. Координаты середины отрезка
  31. Теорема Пифагора
  32. Справочный материал по четырёхугольнику
  33. Пример №1
  34. Признаки параллелограмма
  35. Пример №2 (признак параллелограмма).
  36. Прямоугольник
  37. Пример №3 (признак прямоугольника).
  38. Ромб. Квадрат
  39. Пример №4 (признак ромба)
  40. Теорема Фалеса. Средняя линия треугольника
  41. Пример №5
  42. Пример №6
  43. Трапеция
  44. Пример №7 (свойство равнобедренной трапеции).
  45. Центральные и вписанные углы
  46. Пример №8
  47. Вписанные и описанные четырёхугольники
  48. Пример №9
  49. Пример №10
  50. 📸 Видео

Видео:Миникурс по геометрии. ЧетырехугольникиСкачать

Миникурс по геометрии. Четырехугольники

Определение четырехугольника

Определение 1. Четырехугольник − это замкнутая ломаная линия, состоящая из четырех звеньев.

Определение 2. Четырехугольник − геометрическая фигура (многоугольник), состоящая из четырех точек, никакие три из которых не лежат на одной прямой и последовательно соединенные четырьмя отрезками, называемыми сторонами четырехугольника.

Объединение четырехугольника и ограниченной им части плоскости также называют четырехугольником.

Любой четырехугольник разделяет плоскость на две части, одна из которых называется внутренней областью четырехугольника, а другая внешней областью четырехугольника.

Видео:Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать

Математика 5 класс (Урок№29 - Четырёхугольники.)

Виды четырехугольников

Четырехугольники бывают следующих видов:

  • Параллелограмм − четырехугольник, у которого противоположные стороны попарно вправны и параллельны (Рис.1).
  • Трапеция − четырехугольник, у которого две противоположные стороны параллельны (Рис.2).
  • Прямоугольник − четырехугольник, у которого все углы прямые (Рис.3).
  • Ромб − четырехугольник, у которого все стороны равны (Рис.4).
  • Квадрат − четырехугольник, у которого все стороны равны и все углы прямые (Рис.5).
  • Дельтоид − четырехугольник, у которого есть две пары равных смежных сторон (Рис.6, Рис.6.1).
  • Антипараллелограмм (или контрпараллелограмм)− четырехугольник, у которого противоположные стороны равны но не параллельны (с самопересечением) (Рис.7).
Четырехугольник ответ 5 классЧетырехугольник ответ 5 классЧетырехугольник ответ 5 классЧетырехугольник ответ 5 классЧетырехугольник ответ 5 классЧетырехугольник ответ 5 классЧетырехугольник ответ 5 классЧетырехугольник ответ 5 класс

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Обозначение четырехугольника

Обозначают четырехугольник буквами, стоящих при его вершинах. Называют четырехугольник чередовав буквы при его вершинах по часовой стрелке или против часовой стрелки. Например, четырехугольник на рисунке 8 называют ( small A_1A_2A_3A_4 ) или ( small A_4A_3A_2A_1 ) (Рис.8).

Четырехугольник ответ 5 класс

Видео:№370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.Скачать

№370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.

Соседние вершины четырехугольника

Вершины четырехугольника называются соседними, если они являются концами одной из его сторон.

На рисунке 8 вершины ( small A_2 ) и ( small A_3 ) являются соседними, так как они являются концами стороны ( small A_2A_3. )

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Смежные стороны четырехугольника

Стороны четырехугольника называются смежными, если они имеют общую вершину.

На рисунке 8 стороны ( small A_2A_3 ) и ( small A_3A_4 ) являются смежными, так как они имеют общую вершину ( small A_3. )

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Простой четырехугольник. Самопересекающийся четырехугольник

Четырехугольник называется простым, если его несмежные стороны не имеют общих точек (внутренних или концевых).

Четырехугольник ответ 5 классЧетырехугольник ответ 5 классЧетырехугольник ответ 5 класс

На рисунках 9 и 9.1 изображены простые четырехугольники так как стороны четырехугольников не имеют самопересечений. А на рисунке 10 четырехугольник не является простым, так как стороны ( small A_1A_4 ) и ( small A_2A_3 ) пересекаются. Такой четырехугольник называется самопересекающийся.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если она лежит по одну сторону от прямой, проходящей через любую его сторону.

Четырехугольник ответ 5 класс

На рисунке 11 четырехугольник лежит по одну сторону от прямых ( small m, n, p, q, ) проходящих через стороны четырехугольника. Поэтому такой четырехугольник выпуклый.

Четырехугольник ответ 5 класс

На рисунке 12 прямая ( small m) делит четырехугольник на две части, т.е. четырехугольник не лежит по одну сторону от прямой ( small m). Следовательно, этот четырехугольник не является выпуклым.

Видео:Математика. 5 класс. Угол. Треугольник. Четырехугольник. Вариант А. Тесты ГЭЦ.Скачать

Математика. 5 класс. Угол. Треугольник. Четырехугольник. Вариант А. Тесты ГЭЦ.

Правильный четырехугольник

Простой четырехугольник называется правильным, если все его стороны равны и все углы равны. Квадрат является правильным четырехугольником, так как все его стороны равны и все его углы равны 90°. Среди четырехугольников других правильных четырехугольников не существует.

На рисунке 5 изображен правильный четырехугольник (квадрат), так как у данного четырехугольника все стороны равны и все углы равны. Четырехугольник (ромб) на на рисунке 4 не является правильным, так как все стороны четырехугольника равны, но все его углы не равны друг другу. Прямоугольник также не является правильным четырехугольником, так как несмотря на то, что все углы прямоугольника равны, но все четыре стороны прямоугольника не равны друг другу.

Видео:В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.Скачать

В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.

Периметр четырехугольника

Сумма всех сторон четырехугольника называется периметром четырехугольника. Для четырехугольника ( small A_1A_2A_3A_4 ) периметр вычисляется из формулы:

( small P=A_1A_2+A_2A_3+A_3A_4+A_4A_1 )

Видео:Четырехугольники, №470Скачать

Четырехугольники, №470

Угол четырехугольника

Углом (внутренним углом) четырехугольника при данной вершине называется угол между двумя сторонами четырехугольника, сходящимися к этой вершине. Если четырехугольник выпуклый, то все углы четырехугольника меньше 180°. Если же четырехугольник невыпуклый, то он имеет внутренний угол больше 180° (угол ( small alpha ) на рисунке 13).

Четырехугольник ответ 5 класс

Видео:Что будет в задания №1-5 на ОГЭ по математике 2024Скачать

Что будет в задания №1-5 на ОГЭ по математике 2024

Внешний угол четырехугольника

Внешним углом четырехугольника при данной вершине называется угол смежный внутреннему углу четырехугольника при данной вершине.

Четырехугольник ответ 5 класс

На рисунке 14 угол α является внутренним углом четырехугольника при вершине ( small A_4, ) а углы β и γ являются внешними углами четырехугольника при этой же вершине. Очевидно, что при каждой вершине есть два внешних угла.

Видео:ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 классСкачать

ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 класс

Диагональ четырехугольника

Диагоналями называют отрезки, соединяющие две несоседние вершины четырехугольника.

Очевидно, что у четырехугольника две диагонали.

Видео:5й класс; Математика; "Четырехугольники"Скачать

5й класс; Математика; "Четырехугольники"

Сумма углов четырехугольника

Для любого простого четырехугольника по крайней мере один диагональ делит его на два треугольника. Сумма углов треугольника равна 180°. Поэтому сумма углов простого четырехугольника равна 360°.

Видео:Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

Сумма внешних углов четырехугольника

Пусть задан четырехугольник ( small A_1A_2A_3A_4 .) Внешний угол при вершине ( small A_1) равен ( small 180°-angle A_1.) Аналогично, внешние углы при вершинах ( small A_2, A_3, A_4 ) равны ( small 180°-angle A_2, ) ( small 180°-angle A_3, ) ( small 180°-angle A_4, ) соответственно. Тогда сумма внешних углов четырехугольника равна:

( small 180°-angle A_1 ) ( small +180°-angle A_2 ) ( small +180°-angle A_3 ) ( small +180°-angle A_4 )( small =720°-(angle A_1+angle A_2+angle A_3+angle A_4 )) ( small =720°-360°=360°. )

Задача 1. Доказать, что длина любой стороны четырехугольника меньше суммы длин трех его сторон.

Решение. Рассмотрим произвольный четырехугольник ABCD (Рис.15). Покажем, например, что AB

Видео:ЗАГАДКИ НА ЛОГИКУ. 4 из 5 НЕ ПРОЙДУТСкачать

ЗАГАДКИ НА ЛОГИКУ. 4 из 5 НЕ ПРОЙДУТ

Математика. 5 класс

Конспект урока

Перечень рассматриваемых вопросов

Многоугольник – геометрическая фигура, ограниченная замкнутой ломаной, звенья которой не пересекаются.

Четырёхугольник – геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки.

Прямоугольник – четырёхугольник, у которого все углы прямые (равны 90 градусам).

Квадрат – прямоугольник, у которого все стороны равны.

Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

1. Чулков П. В. Математика: тематические тесты. 5 класс.// П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы.// И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Среди всех многоугольников одним из наиболее распространённых является четырёхугольник. У него имеется несколько разновидностей. Сегодня мы поговорим об этой фигуре и её видах. Для начала введём определение многоугольника.

Многоугольник – это геометрическая фигура, ограниченная замкнутой ломаной, звенья которой не пересекаются.

Посмотрите на рисунки. Не все эти фигуры являются многоугольниками. Исходя из определения, фигура 2 не многоугольник, так как отрезки BD и АС пересекаются.

Четырехугольник ответ 5 класс

Изобразим многоугольник, состоящий из четырёх точек. Для этого отметим какие-нибудь четыре точки, не лежащие на одной прямой например, А,В,С,D. Соединим их с помощью линейки. Получим геометрическую фигуру, которая называется четырёхугольник.

Четырехугольник ответ 5 класс

Четырёхугольник – это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки.

Отмеченные четыре точки А, В, С и D называются вершинами, отрезки АВ, ВС, АС и DC – сторонами четырёхугольника, а углы А, В, С и D – углами четырёхугольника.

Заметим, что четырёхугольником называют как линию, составленную из отрезков, так и эту линию вместе с частью плоскости, расположенной внутри этой линии.

Рассмотрим некоторые разновидности четырёхугольника.

Прямоугольник – это четырёхугольник, у которого все углы прямые (то есть равны девяноста градусам).

Четырехугольник ответ 5 класс

Квадрат – это прямоугольник, у которого все стороны равны.

Четырехугольник ответ 5 класс

Сумму длин всех сторон четырёхугольника называют периметром. Например, периметр четырёхугольника ABCD – это сумма сторон АВ, АС, ВС и CD.

Четырехугольник ответ 5 класс

Р = АВ + ВС + АС + СD

Рассмотрим прямоугольник АBCD. Отмеченные четыре точки А, В, С, D называются вершинами прямоугольника, а отрезки АВ, ВС, АС, DC – сторонами прямоугольника. Нижнюю и верхнюю стороны прямоугольника называют ещё основаниями прямоугольника. АВ и DC – основания. Они равны и параллельны.

Две другие стороны называют высотами, они тоже равны и параллельны.AD и ВС – высоты.

Принято считать, что слово «сторона» означает не только отрезок, но и его длину.

Четырёхугольники можно сравнить, например, способом наложения. Если четырёхугольник полностью накладывается на другой четырёхугольник, то такие четырёхугольники равны. В противном случае четырёхугольники не будут одинаковы.

Мир вокруг нас полон геометрических фигур. Одной из наиболее распространённых является четырёхугольник. Посмотрите: в комнате пол, потолок, телевизор, компьютер – это всё прямоугольники.

Четырехугольник ответ 5 класс

В строительстве очень часто применяют предметы прямоугольной формы. Например, паркет, ламинат, доски, листы стройматериалов.

Четырехугольник ответ 5 класс

В архитектуре тоже наиболее распространена прямоугольная форма: здания и сооружения в большинстве случаев имеют прямоугольную форму.

№ 1. В четырёхугольнике все стороны равны 5 см. Чему равен периметр четырёхугольника?

Решение: для нахождения периметра используем формулу

Р = АВ + АD + ВС + СD.

Так как у четырёхугольника стороны равны, то

Р = 5 см + 5 см + 5 см + 5 см = 20 см

№ 2. Сопоставьте элементы прямоугольника с основанием и вершинами.

Решение: для решения данной задачи вспомним, что основание у прямоугольника – это верхняя и нижняя стороны прямоугольника, а вершины – это точки, в которых пересекаются стороны прямоугольника. Значит, правильный ответ такой:

Видео:Многоугольники. 5 класс.Скачать

Многоугольники. 5 класс.

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Четырехугольник ответ 5 класс

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Четырехугольник ответ 5 класс

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Четырехугольник ответ 5 класс

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Четырехугольник ответ 5 класс

Видео:Вписанные и описанные четырехугольники | Дядя Артем | ОГЭ по математикеСкачать

Вписанные и описанные четырехугольники | Дядя Артем | ОГЭ по математике

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Четырехугольник ответ 5 классуглы Четырехугольник ответ 5 классявляются внешними.

Четырехугольник ответ 5 класс

Каждый внутренний угол выпуклого четырёхугольника меньше Четырехугольник ответ 5 классГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Четырехугольник ответ 5 классЧетырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Четырехугольник ответ 5 классДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Четырехугольник ответ 5 класс

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Четырехугольник ответ 5 класс

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Четырехугольник ответ 5 класс

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Четырехугольник ответ 5 классЧетырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Четырехугольник ответ 5 класс

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Четырехугольник ответ 5 класс

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Четырехугольник ответ 5 класс

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Четырехугольник ответ 5 класс

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Четырехугольник ответ 5 классто параллелограмм Четырехугольник ответ 5 классявляется ромбом.

Четырехугольник ответ 5 класс

Доказательство теоремы 1.

Дано: Четырехугольник ответ 5 классромб.

Докажите, что Четырехугольник ответ 5 класс

Доказательство (словестное): По определению ромба Четырехугольник ответ 5 классПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Четырехугольник ответ 5 классравнобедренный. Медиана Четырехугольник ответ 5 класс(так как Четырехугольник ответ 5 класс), является также и биссектрисой и высотой. Т.е. Четырехугольник ответ 5 классТак как Четырехугольник ответ 5 классявляется прямым углом, то Четырехугольник ответ 5 класс. Аналогичным образом можно доказать, что Четырехугольник ответ 5 класс

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Четырехугольник ответ 5 класс

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Четырехугольник ответ 5 класс

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Четырехугольник ответ 5 класс

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

План доказательства теоремы 2

Дано: Четырехугольник ответ 5 классравнобедренная трапеция. Четырехугольник ответ 5 класс

Докажите: Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Четырехугольник ответ 5 класстогда Четырехугольник ответ 5 классЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Четырехугольник ответ 5 класспроведем параллельную прямую к прямой Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Четырехугольник ответ 5 классчерез точку Четырехугольник ответ 5 класс— середину стороны Четырехугольник ответ 5 класспроведите прямую параллельную Четырехугольник ответ 5 классКакая фигура получилась? Является ли Четырехугольник ответ 5 класстрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Четырехугольник ответ 5 классМожно ли утверждать, что Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Доказательство. Пусть дан треугольник Четырехугольник ответ 5 класси его средняя линия Четырехугольник ответ 5 классПроведём через точку Четырехугольник ответ 5 класспрямую параллельную стороне Четырехугольник ответ 5 классПо теореме Фалеса, она проходит через середину стороны Четырехугольник ответ 5 класст.е. совпадает со средней линией Четырехугольник ответ 5 классТ.е. средняя линия Четырехугольник ответ 5 класспараллельна стороне Четырехугольник ответ 5 классТеперь проведём среднюю линию Четырехугольник ответ 5 классТ.к. Четырехугольник ответ 5 классто четырёхугольник Четырехугольник ответ 5 классявляется параллелограммом. По свойству параллелограмма Четырехугольник ответ 5 классПо теореме Фалеса Четырехугольник ответ 5 классТогда Четырехугольник ответ 5 классТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Четырехугольник ответ 5 класс

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Четырехугольник ответ 5 класс

Доказательство: Через точку Четырехугольник ответ 5 класси точку Четырехугольник ответ 5 класссередину Четырехугольник ответ 5 класспроведём прямую и обозначим точку пересечения со стороной Четырехугольник ответ 5 классчерез Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Четырехугольник ответ 5 классрадиусом 3 единицы. Вычислите значение выражения Четырехугольник ответ 5 классЕсть ли связь между значением данного выражения и координатой точки Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Четырехугольник ответ 5 класси Четырехугольник ответ 5 класси точка Четырехугольник ответ 5 класскоторая является серединой отрезка Четырехугольник ответ 5 класс

Четырехугольник ответ 5 классто Четырехугольник ответ 5 класса отсюда следует, что Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

2) По теореме Фалеса, если точка Четырехугольник ответ 5 классявляется серединой отрезка Четырехугольник ответ 5 классто на оси абсцисс точка Четырехугольник ответ 5 классявляется соответственно координатой середины отрезка концы которого находятся в точках Четырехугольник ответ 5 класси Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

3) Координаты середины отрезка Четырехугольник ответ 5 классс концами Четырехугольник ответ 5 класси Четырехугольник ответ 5 классточки Четырехугольник ответ 5 класснаходятся так:

Четырехугольник ответ 5 класс

Убедитесь, что данная формула верна в случае, если отрезок Четырехугольник ответ 5 класспараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Четырехугольник ответ 5 класскак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Четырехугольник ответ 5 класс

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Четырехугольник ответ 5 класс

Шаг 4. На сторонах другого квадрата отметьте отрезки Четырехугольник ответ 5 класскак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Четырехугольник ответ 5 класс

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Четырехугольник ответ 5 класс

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Четырехугольник ответ 5 класс

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Четырехугольник ответ 5 классто, Четырехугольник ответ 5 класс— прямоугольный.

Четырехугольник ответ 5 класс

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Четырехугольник ответ 5 классявляются Пифагоровыми тройками, то и числа Четырехугольник ответ 5 класстакже являются Пифагоровыми тройками.

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Четырехугольник ответ 5 класс(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Четырехугольник ответ 5 классЧетырехугольник ответ 5 класс

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Четырехугольник ответ 5 класс

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Четырехугольник ответ 5 класс, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Четырехугольник ответ 5 класс

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Четырехугольник ответ 5 класс=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Четырехугольник ответ 5 класс+ CD (по неравенству треугольника). Тогда Четырехугольник ответ 5 класс. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Четырехугольник ответ 5 класс. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Четырехугольник ответ 5 класс

Решение:

Четырехугольник ответ 5 класс(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Четырехугольник ответ 5 класс(АВ CD, ВС-секущая), Четырехугольник ответ 5 класс(ВС || AD, CD — секущая), Четырехугольник ответ 5 класс(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Четырехугольник ответ 5 класс

Доказательство. Четырехугольник ответ 5 класспо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Четырехугольник ответ 5 класскак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Четырехугольник ответ 5 класс

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Четырехугольник ответ 5 класс

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Четырехугольник ответ 5 класспо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Четырехугольник ответ 5 класс Четырехугольник ответ 5 классУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Четырехугольник ответ 5 класс

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Четырехугольник ответ 5 класс

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Четырехугольник ответ 5 класспо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Четырехугольник ответ 5 класскак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Четырехугольник ответ 5 классНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Четырехугольник ответ 5 класс

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Четырехугольник ответ 5 класспо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Четырехугольник ответ 5 класскак вертикальные. Из равенства треугольников следует: ВС= AD и Четырехугольник ответ 5 классНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Четырехугольник ответ 5 класс

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Четырехугольник ответ 5 класс

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Четырехугольник ответ 5 класс

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Четырехугольник ответ 5 классМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Четырехугольник ответ 5 класс. Четырехугольник ответ 5 класспо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Четырехугольник ответ 5 класс. Поскольку в параллелограмме противоположные углы равны, то: Четырехугольник ответ 5 класс. По свойству углов четырёхугольника, Четырехугольник ответ 5 класс

Следовательно, Четырехугольник ответ 5 класс: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Четырехугольник ответ 5 класс

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Четырехугольник ответ 5 класс

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Четырехугольник ответ 5 класс

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Четырехугольник ответ 5 класс

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Четырехугольник ответ 5 класс. Четырехугольник ответ 5 класс

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Четырехугольник ответ 5 класс

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Четырехугольник ответ 5 класс(рис. 96). Докажем, что ABCD— ромб. Четырехугольник ответ 5 класспо двум сторонами и углу между ними.

Четырехугольник ответ 5 класс

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Четырехугольник ответ 5 класспо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Четырехугольник ответ 5 класс

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Четырехугольник ответ 5 класс

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Четырехугольник ответ 5 класс

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Четырехугольник ответ 5 класс

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Четырехугольник ответ 5 класс

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Четырехугольник ответ 5 класси Четырехугольник ответ 5 классПроведите с помощью чертёжного угольника и линейки через точки Четырехугольник ответ 5 класспараллельные прямые, которые пересекут сторону ВС этого угла в точках Четырехугольник ответ 5 классПри помощи циркуля сравните длины отрезков Четырехугольник ответ 5 классСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Доказать: Четырехугольник ответ 5 класс

Доказательство. Проведём через точки Четырехугольник ответ 5 класспрямые Четырехугольник ответ 5 класспараллельные ВС. Четырехугольник ответ 5 класспо стороне и прилежащим к ней углам. У них Четырехугольник ответ 5 класспо условию, Четырехугольник ответ 5 класскак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Четырехугольник ответ 5 класси Четырехугольник ответ 5 класскак противоположные стороны параллелограммов Четырехугольник ответ 5 класс

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Четырехугольник ответ 5 класс

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Четырехугольник ответ 5 класс

Отложим на луче АС пять равных отрезков: АА,Четырехугольник ответ 5 классПроведём прямую Четырехугольник ответ 5 класс. Через точки Четырехугольник ответ 5 класспроведём прямые, параллельные прямой Четырехугольник ответ 5 класс. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Четырехугольник ответ 5 класс, так как точки М и N — середины сторон АВ и ВС.

Четырехугольник ответ 5 класс

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Четырехугольник ответ 5 класс(рис. 122), AD = BD, СЕ= BE.

Четырехугольник ответ 5 класс

Доказать: Четырехугольник ответ 5 класс

Доказательство. 1) Пусть DE- средняя линия Четырехугольник ответ 5 класс. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Четырехугольник ответ 5 класс. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Четырехугольник ответ 5 класс

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Четырехугольник ответ 5 класс

Поэтому Четырехугольник ответ 5 класс. КР— средняя линия треугольника ADC. Поэтому КР || АС и Четырехугольник ответ 5 класс

Получаем: MN || АС и КР || АС, отсюда MN || КРЧетырехугольник ответ 5 класс, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Четырехугольник ответ 5 класс

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Четырехугольник ответ 5 класс

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Четырехугольник ответ 5 класс

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Четырехугольник ответ 5 класс= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Четырехугольник ответ 5 класс

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Четырехугольник ответ 5 классno стороне и прилежащим к ней углам. У них CF = FD по условию, Четырехугольник ответ 5 класскак вертикальные, Четырехугольник ответ 5 классвнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Четырехугольник ответ 5 класс

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Четырехугольник ответ 5 классравнобедренный. Поэтому Четырехугольник ответ 5 класссоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Четырехугольник ответ 5 класс

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Четырехугольник ответ 5 класс

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Четырехугольник ответ 5 классЧетырехугольник ответ 5 класс

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Четырехугольник ответ 5 класс— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Четырехугольник ответ 5 класс

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Четырехугольник ответ 5 класс. По свойству внешнего угла треугольника, Четырехугольник ответ 5 классЧетырехугольник ответ 5 класс— равнобедренный (ОВ= OA = R). Поэтому Четырехугольник ответ 5 классизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Четырехугольник ответ 5 класс

Из доказанного в первом случае следует, что Четырехугольник ответ 5 классизмеряется половиной дуги AD, a Четырехугольник ответ 5 класс— половиной дуги DC. Поэтому Четырехугольник ответ 5 классизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Четырехугольник ответ 5 класс

Четырехугольник ответ 5 класс

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Четырехугольник ответ 5 класс

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Четырехугольник ответ 5 класскак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Четырехугольник ответ 5 класс, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Четырехугольник ответ 5 класс

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Четырехугольник ответ 5 класс(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Четырехугольник ответ 5 класс(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Четырехугольник ответ 5 класс

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Четырехугольник ответ 5 класс

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Четырехугольник ответ 5 класс

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Четырехугольник ответ 5 класс

Доказать: Четырехугольник ответ 5 класс

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Четырехугольник ответ 5 класс

Тогда Четырехугольник ответ 5 класс

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Четырехугольник ответ 5 класс

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Четырехугольник ответ 5 класс

Докажем, что Четырехугольник ответ 5 класс. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Четырехугольник ответ 5 класс. По свойству равнобокой трапеции, Четырехугольник ответ 5 класс

Тогда Четырехугольник ответ 5 класси, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Четырехугольник ответ 5 класс

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Четырехугольник ответ 5 класс

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Четырехугольник ответ 5 классцентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Четырехугольник ответ 5 классвписанного в окружность. Действительно,

Четырехугольник ответ 5 класс

Следовательно, четырёхугольник Четырехугольник ответ 5 класс— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Четырехугольник ответ 5 класс

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Четырехугольник ответ 5 класс

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📸 Видео

Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.Скачать

Найдите площадь треугольника изображенного на клетчатой бумаге с размером клетки 1х1 см.

Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика
Поделиться или сохранить к себе: