Частота длина волны волновой вектор

Волновое число: физический смысл, размерность, формулы, примеры расчета

Вы хотите знать, в чем разница между волновым числом и угловым волновым числом и как их рассчитать? Тогда эта статья как раз для вас. Мы подробно объясним эту тему и покажем на примере, как можно рассчитать эти величины.

Если вы рассматриваете электромагнитную волну с определенной длиной волны, то волновое число является обратным этой длине волны — оно ведет себя противоположным образом. Например, если длина волны увеличивается, волновое число уменьшается. Если, с другой стороны, длина волны уменьшается, то волновое число увеличивается.

Видео:Длина волны. Скорость распространения волн | Физика 9 класс #29 | ИнфоурокСкачать

Длина волны. Скорость распространения волн | Физика 9 класс #29 | Инфоурок

Волновое число в спектроскопии

Волновое число k определяется в спектроскопии как обратная величина длины волны λ, то есть ξ = 1 / λ (называется еще пространственной частотой). Однако его также можно выразить через частоту f и скорость света в вакууме c, тогда ξ = f / c или также через число n длин волн, укладывающихся в определенную длину l, то есть ξ = n / l .

В целом, для волнового числа применимо следующее соотношение: ξ = 1 / λ = f / c = n / l .

Важно: Волновое число ξ не следует путать с частотой f. Частота имеет единицу измерения Гц = 1 / с = с -1 и определяется через обратную величину периода T: f = 1 / T . Она показывает, как часто электромагнитная волна колеблется в секунду.

Частота длина волны волновой вектор

Видео:Физика 9 класс (Урок№12 - Волновые явления. Длина волны. Скорость распространения волн.)Скачать

Физика 9 класс (Урок№12 - Волновые явления. Длина волны. Скорость распространения волн.)

Единица измерения волнового числа

Обычно волновое число выражается в в следующих единицах измерения (в СИ): 1 / м = м -1 , что соответствует числу колебаний на метр. Однако единица может быть также преобразована, например, в единицы 1 / см = см -1 или 1 / мм = мм -1 .

Между этими единицами измерения существует следующая взаимосвязь: 1 м -1 = 0,01 см -1 = 0,001 мм -1 , соответственно 1 мм -1 = 100 см -1 = 1000 м -1 .

Видео:Амплитуда, период, частота и длина волны периодических волнСкачать

Амплитуда, период, частота и длина волны периодических волн

Разница между волновым числом и угловым волновым числом

Угловое волновое число часто ошибочно называют просто волновым числом. Однако, угловое волновое число k является величиной волнового вектора k и связано с волновым числом ξ следующим образом: k = | k | = 2*π*ξ = ω / c = 2*π / λ . В этой формуле где ω представляет собой так называемую угловую частоту. Волновой вектор — это вектор, перпендикулярный волновому фронту волны. Эта формула показывает, что волновое число ξ также может быть вычислено из углового волнового числа k: ξ = k / 2*π .

Важно: Угловую частоту и частоту также нельзя путать друг с другом. Угловая частота ω связана с частотой f следующим образом: ω = 2*π*f .

Физический смысл волнового числа.

Волновое число численно равно числу периодов волны, укладывающихся в отрезок 2π метров. Это пространственный аналог круговой частоты ω (рад·с -1 ). Характеристика периодического процесса в пространстве.

Видео:Волновой резонанс ДОХОДЧИВО и просто; 1/4 , 1/2 длины волныСкачать

Волновой резонанс ДОХОДЧИВО и просто;  1/4 , 1/2 длины волны

Пример расчета волнового числа

Если мы наблюдаем электромагнитную волну с длиной волны λ = 500 нм и хотим вычислить по ней волновое число ξ, то поступаем следующим образом. Чтобы получить размерность м -1 сначала переведите длину волны в метры. То есть 500 нм = 500 * 10 -9 м = 5*10 -7 м.

Используя представленную выше формулу, вы можете определить соответствующее волновое число: ξ = 1 / λ = 1 / 5*10 -7 = 2*10 6 м -1 .

На одном метре волна колеблется 2 миллиона раз. Если преобразовать единицу измерения, то можно сказать, что волна колеблется 2000 раз на одном миллиметре: 2 * 10 6 м -1 = 0,001 * 2 * 10 6 мм -1 = 2000 мм -1 .

Видео:Урок №45. Электромагнитные волны. Радиоволны.Скачать

Урок №45. Электромагнитные волны. Радиоволны.

Пример расчета углового волнового числа

Если использовать ту же длину волны λ = 500 нм =5 *10 -7 м, как в предыдущем примере, и подставьте это значение в формулу для расчета углового волнового числа, то это приведет к следующим результатам: k = 2 * π / λ = 2 * π / 5 *10 -7 м = 1,2566 * 10 7 м -1 .

Легко видеть, что угловое волновое число k отличается от волнового числа ξ из предыдущего примера:

ξ = 2*10 6 м -1 ↔ k = 1,2566 * 10 7 м -1

Видео:Длина и частота волныСкачать

Длина и частота волны

Преобразование длины волны в волновой число

В следующей таблице показаны два направления преобразования из длины волны в волновое число и наоборот. Кроме того, в последней колонке перечислены некоторые области применения спектроскопии:

Видео:Физика 11 класс (Урок№2 - Механические волны.)Скачать

Физика 11 класс (Урок№2 - Механические волны.)

Волновое движение в физике — формулы и определение с примерами

Содержание:

Волновое движение:

Процесс распространения колебаний в упругой среде называют механической волной. Для механических волн нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию, она должна обладать инертными и упругими свойствами.

Различают поперечные и продольные волны. Продольные волны могут распространяться в любых средах: твердых, жидких и газообразных; поперечные – только в твердых средах.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. Волны переносят энергию колебаний.

Изучив страницу, вы сможете:

  • исследовать образование стоячих звуковых волн в воздухе;
  • объяснять механизм образования стоячих волн, определять узлы и пучности, используя графический метод;
  • исследовать интерференцию от двух источников на поверхности воды;
  • объяснять принцип Гюйгенса и условия наблюдения дифракционной картины механических волн.

Видео:Длина волныСкачать

Длина волны

Уравнение бегущей волны

Колебательное движение тела в упругой среде является источником механической волны.

Волну, переносящую энергию, называют бегущей волной.

В однородной среде скорость распространения волны остается величиной постоянной. Смещение y (x, t) от положения равновесия частиц среды при распространении волны зависит от координаты x на оси 0х, вдоль которой распространяется волна, и от времени t по закону:

Частота длина волны волновой вектор

где Частота длина волны волновой вектор

Введем волновое число Частота длина волны волновой вектортогда уравнение бегущей волны примет вид Частота длина волны волновой вектор

Смещение точек упругой среды в волне, бегущей в противоположном направлении выбранной оси 0х, можно определить по формуле: Частота длина волны волновой вектор

Частота длина волны волновой вектор

Вспомните! Основные характеристики волн. Волны, созданные источником, совершающим гармонические колебания, характеризуются амплитудой колебания частиц среды A, частотой Частота длина волны волновой вектордлиной волны Частота длина волны волновой вектори скоростью распространения Частота длина волны волновой вектор

Длиной волны Частота длина волны волновой векторназывают расстояние между двумя соседними точками на оси 0х, колеблющимися в одинаковых фазах. Расстояние, равное длине волны Частота длина волны волновой вектор, волна пробегает за период Т, следовательно, Частота длина волны волновой векторВ однородных средах скорость распространения волны величина постоянная.

Видео:Волновое движение. Механические волны. 9 класс.Скачать

Волновое движение. Механические волны.  9 класс.

Физический смысл волнового числа

Запишем формулу (2), выразив циклическую частоту через период Частота длина волны волновой векторс учетом определения длины волны Частота длина волны волновой векторполучим: Частота длина волны волновой вектор

Бегущая волна обладает двойной периодичностью – во времени и в пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны Частота длина волны волновой векторВолновое число Частота длина волны волновой векторявляется пространственным аналогом циклической частоты Частота длина волны волновой вектор

Видео:Механические модели волн. 1.Скачать

Механические модели волн. 1.

Фронт волны и волновая поверхность

Волна за время, равное периоду колебаний, достигает точек пространства, расположенных от источника на расстоянии длины волны. Совокупность этих точек представляет собой фронт волны, который отделяет колеблющиеся точки среды от точек, не вовлеченных в колебательное движение. Фронт волны от точечного источника представляет собой сферу, от плоской пластины – плоскость, от струны – форму цилиндра (рис. 79–81).

Частота длина волны волновой вектор

Фронт волны – это геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Направление распространения волны указывает луч, который перпендикулярен фронту волны.

В волне можно рассмотреть множество поверхностей, все точки которых совершают колебания синфазно, их называют волновыми поверхностями. При множестве волновых поверхностей, фронт волны только один.

Геометрическое место точек пространства, которые совершают колебания в одинаковой фазе в данный момент времени, называют волновой поверхностью.

Видео:Определение длины волны и её связь с частотойСкачать

Определение длины волны и её связь с частотой

Стоячие волны

Уравнение стоячей волны При отражении от более плотной среды волна, изменив свое направление на обратное, меняет фазу на Частота длина волны волновой векторто есть на противоположную. В результате сложения падающей и отраженной волн образуется стоячая волна. Она имеет вид, представленный на рисунке 83. В стоячей волне существуют неподвижные точки, которые называются узлами. Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями.

Получим уравнение стоячей волны путем сложения уравнений бегущих волн: Частота длина волны волновой вектор

Заменив волновое число его значением Частота длина волны волновой векторзапишем уравнение стоячей волны в виде: Частота длина волны волновой вектор

Координаты точек пучностей и узлов определяются из условий наибольшего и наименьшего значений амплитуды. При Частота длина волны волновой векторобразуется пучность с амплитудой равной 2 А (рис. 84). Расстояния от источника стоячей волны до пучностей равны: Частота длина волны волновой вектор

Частота длина волны волновой вектор

При Частота длина волны волновой векторобразуются узлы, амплитуда колебаний в этой точке равна 0. Расстояния от источника волны до узлов равны:

Частота длина волны волновой вектор

Расстояния между двумя соседними пучностями или двумя соседними узлами равны:

Частота длина волны волновой вектор

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не переносится в другие части струны. В каждом таком отрезке происходит дважды за период превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Отсутствие переноса энергии является отличительной особенностью стоячей волны.

Пример:

Уравнение бегущей волны, изображенной на рисунке (рис. 85): Частота длина волны волновой вектор. Уравнение отраженной волны: Частота длина волны волновой вектор

А. Получите уравнение стоячей волны как сумму падающей и отраженной волн.

В. Полученное выражение запишите, заменив волновое число и циклическую частоту через длину волны и период.

С. Определите положение узлов и пучностей.

Частота длина волны волновой вектор

Дано:

Частота длина волны волновой вектор

Частота длина волны волновой вектор

Решение: А. Уравнение стоячей волны определятся сложением уравнений бегущих волн: Частота длина волны волновой векторЧастота длина волны волновой вектор

В. Частота длина волны волновой вектор

С. При Частота длина волны волновой векторобразуется пучность с амплитудой 2А. Расстояние от источника до пучностей Частота длина волны волновой вектор

С. Расстояние от узлов определим из условия Частота длина волны волновой вектортогдаЧастота длина волны волновой вектор

Ответ: Частота длина волны волновой векторЧастота длина волны волновой вектор

Интерференция волн

Если в некоторой среде несколько источников возбуждают механические волны, то они распространяются независимо друг от друга. Все точки среды принимают участие в колебаниях, вызванных каждой волной в отдельности. Наложение волн, в результате которой появляется устойчивая картина чередующихся максимумов и минимумов колебаний частиц среды, называют интерференцией.

Интерферировать могут только волны, имеющие одинаковую частоту и постоянный сдвиг фаз. Такие волны называют когерентными, их создают источники, колеблющиеся с одинаковой частотой и постоянным значением сдвига фаз.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны: например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников (рис. 87).

Запомните! Волны называют когерентными, если их источники совершают колебания одной частоты с постоянным сдвигом фаз.

Частота длина волны волновой вектор

Условие максимума и минимума при интерференции двух волн

Амплитуда колебаний при наложении волн определяется в соответствии с принципом суперпозиции (рис. 88). Если в некоторой точке среды накладываются гребни когерентных волн, то происходит усиление колебаний, амплитуда принимает значение, равное сумме амплитуд. Если накладывается гребень одной волны с впадиной другой волны, то при равенстве амплитуд отдельно взятых волн данная точка пространства не совершает колебания. Если амплитуды отличаются, то колебания в этой точке совершаются с амплитудой равной разности амплитуд распространяющихся волн.

Частота длина волны волновой вектор

Для определения результата интерференции волн, распространяющихся от двух источников А и В, находящихся на расстоянии Частота длина волны волновой векторот точки С, достаточно определить разность хода волн и сравнить с длиной волны. Если разность хода равна целому числу длин волн, то в точке С произойдет наложение гребней или впадин, амплитуда колебаний возрастет (рис. 89). Выполняется условие максимума:

Частота длина волны волновой вектор

где Частота длина волны волновой вектор− разность хода волн, Частота длина волны волновой вектор– натуральное число, равное 0, 1, 2, 3 … Разность хода лучей соответствует разности фаз колебаний:

Частота длина волны волновой вектор

так как волна за период пробегает расстояние равное длине волны Частота длина волны волновой векторпериоду Т соответствует фаза Частота длина волны волновой вектор

Минимум колебаний в рассматриваемой точке среды наблюдается в том случае, если от двух когерентных источников распространяются волны со сдвигом фаз, равным нечетному числу p, а разность хода лучей кратна нечетному числу полуволн. В этом случае колебания происходят в противофазе (рис. 90).

Возьмите на заметку:

Интерференция волн приводит к перераспределению энергии колебаний между частицами среды. Это не противоречит закону сохранения энергии, так как в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

Частота длина волны волновой вектор

Распространение волн. Принцип Гюйгенса – Френеля

На основе принципа Х. Гюйгенса: каждая точка среды, до которой дошло возмущение, является источником вторичных волн, невозможно объяснить, почему источники вторичных волн создают фронт только по направлению распространения волны. Для объяснения явлений распространения волны французский физик О. Френель в 1815 г. дополнил принцип Х. Гюйгенса представлениями о когерентности и интерференции вторичных волн. При наложении вторичных когерентных волн происходит интерференция, в результате которой амплитуда колебаний в различных точках пространства становится разной: по направлению распространения волны усиливается, в обратном направлении – уменьшается. Огибающая фронты вторичных волн является фронтом результирующей волны (рис. 92).

Частота длина волны волновой вектор

Дифракция механических волн

Вторичные волны, созданные точками среды, которые находятся на краю отверстия или препятствия, искривляются и волна огибает препятствие (рис. 93 а–г).

Частота длина волны волновой вектор

Дифракция – это явление огибания волнами препятствий.

Все волны способны огибать препятствия, если длина волны соизмерима с размерами препятствия. Дифракция становится заметной, если размеры препятствия меньше длины волны.

Физика в нашей жизни:

Струнные музыкальные инструменты

Интересно знать! Адырна (рис. 96 а) – один из древнейших казахских струнных инструментов. В его форме отобразилась воинственность кочевников-казахов: он напоминает изогнутый лук воина. Деревянный корпус инструмента легкий, так как он пустотелый. Струны изготавливают из кусков специально выделанной кожи или сплетенных из верблюжьей шерсти нитей. Музыкант играет, перебирая струны. Их в инструменте 13. Жетыген (рис. 96 б) – семиструнный музыкальный инструмент. Он имеет прямоугольную форму, изготовлен из дерева, струны – из конского волоса. Легенда о жетыгене раскрывает причину использования именно семи струн. Старик, потерявший семерых сыновей, вылил свое горе, исполняя кюи о них. Вспоминая каждого из сыновей, он натягивал новую струну на музыкальном инструменте.

Частота длина волны волновой вектор

Условие возникновения стоячей волны в струне

Стоячая волна в струне возникает только в том случае, если длина Частота длина волны волновой векторструны равняется целому числу длин полуволн: Частота длина волны волновой вектор

Набору значений Частота длина волны волновой вектордлин волн соответствует набор возможных частот Частота длина волны волновой векторКаждая из частот Частота длина волны волновой вектори связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота называется основной частотой, все остальные частоты называются гармониками.

В отличие от груза на пружине или маятника, у которых имеется единственная собственная частота, струна обладает бесконечным числом собственных резонансных частот. На рисунке 96 в изображены несколько типов стоячих волн в струне. Стоячие волны различных типов могут одновременно присутствовать в колебаниях струны.

Визуализация звуковых волн

Существует несколько способов демонстрации стоячей волны, один из них – фигуры Хладни (рис. 97). Немецкий физик Эрнст Хладни получал узор, посыпая пластинку песком и проводя по краю смычком. Движения смычка заставляли пластинку колебаться на некоторой резонансной частоте. Песок скапливался и лежал неподвижно в узлах, а на участках, где отраженная волна усиливала бегущую, песок смещался.

Частота длина волны волновой вектор

Интересно знать! В Шотландии есть рослинская капелла св. Матвея, на одной из арок которой есть 213 резных каменных кубов, с вырезанным на них геометрическим рисунком. Многие исследователи пытались понять, что зашифровано в рисунках на кубах. Отставной генерал ВВС Томас Митчел со своим сыном, пианистом Стюартом Митчелом предложили оригинальный способ расшифровки послания. Они сопоставили геометрические рисунки с фигурами Хладни и пришли к выводу, что на кубах записаны ноты. Собрав ноты воедино и творчески обработав их, они представили миру произведение «Рослинский Мотет».

Итоги:

Частота длина волны волновой вектор

Глоссарий

Волновая поверхность – геометрическое место точек, имеющих одинаковую фазу колебаний.

Дифракция – явление огибания волнами препятствий.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Когерентные волны – волны, имеющие одинаковую частоту и постоянный сдвиг фаз.

Механическая волна – процесс распространения колебаний в упругой среде.

Фронт волны – геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Видео:Длина и скорость волныСкачать

Длина и скорость волны

Распространение колебаний в упругих средах. Продольные и поперечные волны

Опыт показывает, что колебания, возбужденные в какой-либо точке упругой среды, с течением времени передаются в ее другие точки. В качестве примера достаточно вспомнить, что измерение пульса осуществляется на запястье, хотя сердце расположено внутри грудной клетки. Такие явления связаны с распространением механических волн.

Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.

Механические волны не могут распространяться в вакууме.
Источником механических волн является колеблющееся тело. Если источник колеблется синусоидально, то и волна в упругой среде будет иметь форму синусоиды. Колебания, вызванные в каком-либо месте упругой среды, распространяются в ней с определенной скоростью, зависящей от плотности и упругих свойств среды.

Подчеркнем, что при распространении волны отсутствует перенос вещества, т. е. частицы колеблются вблизи положений равновесия. Среднее смещение частиц за большой промежуток времени равно нулю.
Рассмотрим основные характеристики волны.

Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.

Частота длина волны волновой вектор

Основными характеристиками волны являются (рис. 208):

  • амплитуда (A) — модуль максимального смещения точек среды из положений равновесия при колебаниях;
  • период (T) — время полного колебания (период колебаний точек среды равен периоду колебаний источника волны);
  • частотаЧастота длина волны волновой вектор— число полных колебаний в данной точке в единицу времени. Частота волн определяется частотой источника;
  • скоростьЧастота длина волны волновой вектор— скорость перемещения гребня волны (это не скорость частиц!):Частота длина волны волновой вектор
  • длина волныЧастота длина волны волновой вектор— наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. е. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника Частота длина волны волновой вектор

Рассмотрим колебания источника волны, происходящие с циклической частотой Частота длина волны волновой вектори амплитудой А:
Частота длина волны волновой вектор
где x(t) — смещение источника от положения равновесия.

В некоторую точку среды колебания придут не мгновенно, а через промежуток времени, определяемый скоростью волны и расстоянием от источника до точки наблюдения. Если скорость волны в данной среде равна v, то зависимость от времени t координаты (смещения) х колеблющейся точки, находящейся на расстоянии r от источника, описывается функцией
Частота длина волны волновой вектор
где k — волновое число Частота длина волны волновой векторфаза волны.

Выражение х(t, r) называется уравнением плоской волны, распространяющейся (бегущей) вдоль направления радиус-вектора Частота длина волны волновой вектор

Бегущую волну можно наблюдать, проведя следующий опыт: если один конец резинового шнура, лежащего на гладком горизонтальном столе, закрепить и, слегка натянув шнур рукой, привести его второй конец в колебательное движение в направлении, перпендикулярном шнуру, то по нему побежит волна, описываемая уравнением плоской волны.

Рассмотрим классификацию бегущих волн по направлению колебаний частиц среды, в которой они распространяются.

Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волн. Продольную волну легко получить с помощью длинной пружины, которая лежит на гладкой горизонтальной поверхности и один конец ее закреплен. Легким ударом по свободному концу В пружины мы вызовем появление волны (рис. 209).

Частота длина волны волновой вектор

При этом каждый виток пружины будет колебаться вдоль направления распространения волны ВС. Примерами продольных волн являются звуковые волны в воздухе и жидкости.

Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны. С помощью длинной пружины можно продемонстрировать распространение поперечных волн, если совершать колебания незакрепленного конца перпендикулярно пружине (рис. 210).

Частота длина волны волновой вектор

Поперечные волны вызывают звучание струн музыкальных инструментов при их возбуждении.

Продольные колебания симметричны относительно линии распространения ВС, и их действие на любой регистрирующий прибор не изменяется, если прибор будет поворачиваться вокруг направления распространения.

Действие поперечных волн на регистрирующий прибор зависит от того, в какой плоскости, проходящей через линию распространения, происходит колебание. Эта особенность поперечных волн носит название поляризации. Если колебания происходят в одной плоскости, то волну называют плоско или линейно поляризованной. Если конец вектора колебаний, например вектора смещения, скорости, напряженности электрического поля, описывает эллипс или окружность, то волну называют эллиптически или циркулярно-поляризованной.

До сих пор мы рассматривали волны, распространяющиеся в какой-либо среде. Волны, которые распространяются на границе раздела двух сред, называются поверхностными волнами. Примером данного типа волн служат волны на поверхности воды.

Звуковые волны. Скорость звука. Ультразвук

Звуком называются колебания среды, воспринимаемые органами слуха.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.

Звуковая волна — упругая продольная волна, представляющая собой зоны сжатия и разрежения упругой среды (например, воздуха), распространяющиеся в пространстве с течением времени. Таким образом, в процессе распространения звуковой волны меняются такие характеристики среды, как давление и плотность.

Звуковые волны классифицируются по частоте следующим образом:

  • инфразвук Частота длина волны волновой вектор
  • слышимый человеком звук Частота длина волны волновой вектор
  • ультразвук Частота длина волны волновой вектор
  • гиперзвук Частота длина волны волновой вектор

Многие животные могут воспринимать ультразвуковые частоты. Например, собаки могут слышать звуки до 50 000 Гц, а летучие мыши — до 100 000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.
Звуковые волны приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся мелодиями, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и безошибочно можем отличить пение птиц от шума городской улицы.

Одной из важнейших характеристик звуковых волн является спектр. Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

В сплошном спектре присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
В

дискретном спектре — конечное число волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.

Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).

Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию па различных музыкальных инструментах.

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить

основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью.

Интенсивность I — это энергия Частота длина волны волновой векторпереносимая волной в единицу времени Частота длина волны волновой вектор= 1 с через единичную площадку площадью Частота длина волны волновой векторрасположенную перпендикулярно к направлению распространения волны:
Частота длина волны волновой вектор

Другими словами, интенсивность любой волны — мощность, переносимая волной через единичную площадку, расположенную перпендикулярно к направлению распространения волны.

Единицей интенсивности в СИ является ватт на метр в квадрате Частота длина волны волновой вектор
Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости.

С возрастом порог слышимости человека возрастает.

Интенсивность звуковых волн, при которой возникает ощущение боли, называют порогом болевого ощущения или болевым порогом. Интенсивность звука, улавливаемого ухом человека, лежит в широких пределах: от Частота длина волны волновой вектор(порог слышимости) до Частота длина волны волновой вектор(порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Реактивный самолет может создать звук интенсивностью Частота длина волны волновой вектормощные усилители на концерте в закрытом помещении — до Частота длина волны волновой векторпоезд метро — около Частота длина волны волновой вектор

Уровни интенсивности звука L определяют обычно, используя шкалу, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б самый слабый звук, который воспринимает наше ухо. Единица названа в честь изобретателя телефона А. Г. Белла. Измерение уровня интенсивности в децибелах проще, поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

Частота длина волны волновой вектор
где I — интенсивность данного звука, Частота длина волны волновой вектор— интенсивность Частота длина волны волновой векторсоответствующая минимально возможной интенсивности звука, улавливаемого ухом человека.

Так, поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Физическим характеристикам звука соответствуют определенные (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это связано с тем, что восприятие звука — процесс не только

физический, но и физиологический. Действительно, человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными физиологическими характеристиками звука являются громкость, высота и тембр.

Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах, т. е. его способностью улавливать звуки различных частот. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 Гц до

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Урок 95 (осн). Механические волны. ЗвукСкачать

Урок 95 (осн). Механические волны. Звук

волновой вектор

ВОЛНОВОЙ ВЕКТОР — вектор k, определяющий направление распространения и пространственный период плоской монохроматич. волны

Частота длина волны волновой вектор

где Частота длина волны волновой вектор— постоянные амплитуда и фаза волны, Частота длина волны волновой вектор— круговая частота, r — радиус-вектор. Модуль В. в. наз. волновым числом k=Частота длина волны волновой вектор, где Частота длина волны волновой вектор— пространственный период или длина волны. В направлении В. в. происходит наибыстрейшее изменение фазы волны Частота длина волны волновой вектор, поэтому оно и принимается за направление распространения. Скорость перемещения фазы в этом направлении, или фазовая скорость Частота длина волны волновой вектор, определяется через волновое число Частота длина волны волновой вектор. При классич. описании волновых процессов с В. в. связана плотность импульса Частота длина волны волновой вектор, где Частота длина волны волновой вектор— плотность энергии. В квантовом пределе соответственно импульс Частота длина волны волновой вектор. Направление переноса энергии волной, вообще говоря, может и не совпадать с направлением В. в., как это имеет место, напр., в анизотропных средах или даже в изотропных средах с аномальной дисперсией, где возможен перенос энергии в направлении, противоположном В. в.

Понятие о В. в. может быть обобщено на случай квазигармонич. волн вида Частота длина волны волновой вектор, если ввести локальный В. в. Частота длина волны волновой вектори мгновенную частоту Частота длина волны волновой вектор. Однако, однозначная интерпретация этих величин допустима только при выполнении неравенств:

Частота длина волны волновой вектор

где k; — декартовы составляющие В. в. (i, j=1, 2, 3). Эти условия устанавливают применимость лучевого описания волновых процессов (приближения геометрической оптики и геометрической акустики, квазиклассич. приближения).

Для эл—магн. гармонической волны (в вакууме) В. в. k и величина Частота длина волны волновой вектор(с — скорость света) объединяются в единый волновой четырёхвектор, компоненты к-рого подчиняются при переходе от одной инерциальной системы отсчёта к другой (движущейся с относит. скоростью u) Лоренца преобразованием:

Частота длина волны волновой вектор

Первое из этих соотношений определяет Доплера аффект, второе — эффект аберрации углов прихода волн (или формируемых ими лучей).

M. А. Миллер, Г. В. Пермитин.

🎥 Видео

ВОЛНЫ и ЗВУК физика 9 класс ПерышкинСкачать

ВОЛНЫ и ЗВУК физика 9 класс Перышкин

Билет №36 "Волновод"Скачать

Билет №36 "Волновод"

Особенности распространения радиоволн [ РадиолюбительTV 16]Скачать

Особенности распространения радиоволн [ РадиолюбительTV 16]

Волны. Основные понятия. Решение задач.Задача 1Скачать

Волны. Основные понятия. Решение задач.Задача 1

Свет. Введение (видео 10) | Масштабы Вселенной | Космология и АстрономияСкачать

Свет. Введение (видео 10) | Масштабы Вселенной | Космология и Астрономия

Колебания и волныСкачать

Колебания и волны

5.6 Механические волны. Виды волнСкачать

5.6 Механические волны. Виды волн
Поделиться или сохранить к себе: