- Определения
- Свойства
- Презентация к уроку по геометрии «свойства секущих и касательной к окружности» (8 класс)
- Описание презентации по отдельным слайдам:
- Отрезки и прямые, связанные с окружностью. Теорема о бабочке
- Отрезки и прямые, связанные с окружностью
- Свойства хорд и дуг окружности
- Теоремы о длинах хорд, касательных и секущих
- Доказательства теорем о длинах хорд, касательных и секущих
- Теорема о бабочке
- 🌟 Видео
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Определения
Хорда – отрезок, соединяющий две точки окружности.
В частности, хорда, проходящая через центр окружности, называется диаметром .
Секущей к окружности называется прямая, которая пересекает окружность в двух различных точках.
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.
Видео:8 класс, 32 урок, Касательная к окружностиСкачать
Свойства
Радиус, проведенный в точку касания, перпендикулярен касательной
Отрезки касательных, проведенных к окружности из одной точки, равны.
Отрезки пересекающихся хорд связаны соотношением:
Произведения отрезков секущих, проведенных из одной точки, равны:
Квадрат отрезка касательной равен произведению отрезков секущей, проведенной из той же точки:
Если две окружности касаются внешним образом, то длина отрезка общей внешней касательной равна удвоенному среднему пропорциональному их радиусов Видеодоказательство
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать
Презентация к уроку по геометрии «свойства секущих и касательной к окружности» (8 класс)
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Теорема: Касательная к окружности перпендикулярна к радиусу, проведённому в точку касания. А O a Теорема: Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Теорема: Вписанный угол равен половине дуги, на которую он опирается. Центральный угол равен дуге, на которую он опирается.
Следствие: Вписанные углы, опирающиеся на одну и ту же дугу равны.
Следствие: Вписанный угол, опирающийся на диаметр — прямой. А В С . О
Теорема: Отрезки касательных, проведённые из одной точки к окружности, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
А О С В D F Задача: Угол между двумя секущими равен полуразности большей и меньшей дуг, образованных этими секущими. ВAC = ½ ( DF — BС ).
Задача: Угол между касательной и хордой равен половине градусной меры дуги, стягиваемой хордой. ACB = ½ CB
Теорема: Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды. А E С В D 1 2 3 4
Задачи 1. Найдите угол АСО, если его сторона АС касается окружности, О — центр окружности, а большая дуга окружности, заключенная внутри этого угла, равна116°. Ответ дайте в градусах.
2. Хорда АВ стягивает дугу окружности в 46°. Найдите угол АВС между этой хордой и касательной к окружности, проведенной через точку В.
3. Через концы А и С дуги окружности в проведены касательные ВА и ВС . Найдите угол АВС, если угол АОС равен 62° . Ответ дайте в градусах.
4. К окружности, вписанной в треугольник, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. C М
5. Хорда АВ пересекает диаметр СD окружности в точке Е. АЕ = 3, ВЕ = 8, СЕ = 2. Найдите радиус окружности.
6. АВ и AD — секущие окружности. Дуга ВD равна 40°, дуга СЕ = 100°. Найдите угол ВАD . А О С В D E
7. (№ 324681) На отрезке АВ выбрана точка С так, что АС = 75 и ВС = 10. Окружность с центром в точке А проходит через точку С. Найдите длину касательной, проведенной из точки В к этой окружности.
Свойство касательной и секущей, проведенных из одной точки к окружности
Теорема: Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной. Доказательство: Рассмотрим AВС и ADВ: А – общий, АВС = АDВ AВС ADВ (по двум угл.) D А O B С . . . . Дано: окружность, АВ – касательная, АD – секущая. Доказать:
7.(№ 324681) На отрезке АВ выбрана точка С так, что АС = 75 и ВС = 10. Окружность с центром в точке А проходит через точку С. Найдите длину касательной, проведенной из точки В к этой окружности.
Теорема: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.
Из точки вне окружности проведена секущая, пересекающая окружность в точках, удаленных от данной на 12 и 20. Расстояние от данной точки до центра окружности равно 17. Найдите радиус окружности.
Через точку M проведены две прямые. Одна из них касается некоторой окружности в точке A, а вторая пересекает эту окружность в точках B и C, причём BC = 7 и BM = 9. Найдите AM. Из точки M, расположенной вне окружности на расстоянии от центра, проведены касательная MA (A — точка касания) и секущая, внутренняя часть которой вдвое меньше внешней и равна радиусу окружности. Найдите радиус окружности. 2. Из точки M, расположенной вне окружности на расстоянии от центра, проведена касательная МА (А – точка касания) и секущая, внутренняя часть которой меньше внешней в 2 раза и равна радиусу окружности. Найдите радиус этой окружности. 3. Окружность, проходящая через вершину A треугольника ABC, касается стороны BC в точке M и пересекает стороны AC и AB соответственно в точках L и K, отличных от вершины A. Найдите отношение AC : AB, если известно, что длина отрезка LC в два раза больше длины отрезка KB, а отношение CM : BM = 3 : 2.
Видео:Секущая и касательная. 9 класс.Скачать
Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Отрезки и прямые, связанные с окружностью
Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||
Окружность | ||||||||||||||||||||||||||||
Круг | ||||||||||||||||||||||||||||
Радиус | ||||||||||||||||||||||||||||
Хорда | ||||||||||||||||||||||||||||
Диаметр | ||||||||||||||||||||||||||||
Касательная | ||||||||||||||||||||||||||||
Секущая |
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Конечная часть плоскости, ограниченная окружностью
Отрезок, соединяющий центр окружности с любой точкой окружности
Отрезок, соединяющий две любые точки окружности
Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности
Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания
Прямая, пересекающая окружность в двух точках
Видео:Окружность, касательная, секущая и хорда | МатематикаСкачать
Свойства хорд и дуг окружности
Фигура | Рисунок | Свойство |
Диаметр, перпендикулярный к хорде | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. | |
Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
Равные хорды | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. | |
Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
Две хорды разной длины | Большая из двух хорд расположена ближе к центру окружности. | |
Равные дуги | У равных дуг равны и хорды. | |
Параллельные хорды | Дуги, заключённые между параллельными хордами, равны. |
Диаметр, перпендикулярный к хорде |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Большая из двух хорд расположена ближе к центру окружности.
У равных дуг равны и хорды.
Дуги, заключённые между параллельными хордами, равны.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Теоремы о длинах хорд, касательных и секущих
Фигура | Рисунок | Теорема | ||||||||||||||||
Пересекающиеся хорды | ||||||||||||||||||
Касательные, проведённые к окружности из одной точки | ||||||||||||||||||
Касательная и секущая, проведённые к окружности из одной точки | ||||||||||||||||||
Секущие, проведённые из одной точки вне круга |
Пересекающиеся хорды | ||
Касательные, проведённые к окружности из одной точки | ||
Касательная и секущая, проведённые к окружности из одной точки | ||
Секущие, проведённые из одной точки вне круга | ||
Пересекающиеся хорды |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать
Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать
Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
🌟 Видео
Геометрия 8 класс : Касательная к окружностиСкачать
Теорема о касательной и секущейСкачать
Касательная к окружности. Видеоурок 18. Геометрия 8 классСкачать
Касательная и секущая к окружности.Скачать
КАСАТЕЛЬНАЯ к ОКРУЖНОСТИ 8 класс геометрия АтанасянСкачать
Теорема о секущей и касательной, о секущих, о пересекающихся хордах | Теоремы об окружностях - 1Скачать
Угол между хордой и касательнойСкачать
8 класс. Окружность+секущая+касательнаяСкачать
Секретная теорема из учебника геометрииСкачать
Секущие в окружности и их свойство. Геометрия 8-9 классСкачать
ОГЭ за одну минуту | ОГЭ, математика, задание 16 (окружность и касательная)Скачать