Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
Ваш ответ
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
решение вопроса
Видео:№211. Две параллельные прямые пересечены секущей. Докажите, что: а) биссектрисыСкачать
Похожие вопросы
- Все категории
- экономические 43,277
- гуманитарные 33,618
- юридические 17,900
- школьный раздел 606,667
- разное 16,822
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:§ 4 № 1-51 - Геометрия 7-9 класс ПогореловСкачать
Биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны
§ 15. Свойства параллельных прямых
(обратная теореме 14.1)
Если две параллельные прямые пересечены секущей, то углы, образующие пару накрест лежащих углов, равны.
На рисунке 224 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.
Пусть ∠ 1 ≠ ∠ 2. Тогда через точку K проведём прямую a 1 так, чтобы ∠ 3 = ∠ 2 (рис. 224). Углы 3 и 2 являются накрест лежащими при прямых a 1 и b и секущей c . Тогда по теореме 14.1 a 1 ‖ b . Получили, что через точку K проходят две прямые, параллельные прямой b . Это противоречит аксиоме параллельности прямых. Таким образом, наше предположение неверно, и, следовательно, ∠ 1 = ∠ 2.
(обратная теореме 14.3)
Если две параллельные прямые пересечены секущей, то углы, образующие пару соответственных углов, равны.
На рисунке 225 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.
По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 равны как вертикальные. Следовательно, ∠ 1 = ∠ 2.
(обратная теореме 14.2)
Если две параллельные прямые пересечены секущей, то сумма углов, образующих пару односторонних углов, равна 180° .
На рисунке 226 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 + ∠ 2 = 180°.
По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 смежные, поэтому ∠ 1 + ∠ 3 = 180°. Следовательно, ∠ 1 + ∠ 2 = 180°.
Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой ( рис. 227 ).
Докажите это следствие самостоятельно.
Задача. Докажите, что все точки одной из двух параллельных прямых равноудалены от другой прямой.
Решение. Пусть прямые a и b параллельны (рис. 228), M и N — две произвольные точки прямой a . Опустим из них перпендикуляры MK и NP на прямую b . Докажем, что MK = NP .
Рассмотрим треугольники MKN и PNK . Отрезок KN — их общая сторона. Так как MK ⊥ b и NP ⊥ b , то MK ‖ NP , а углы MKN и PNK равны как накрест лежащие при параллельных прямых MK и NP и секущей KN .
Аналогично углы MNK и PKN равны как накрест лежащие при параллельных прямых MN и KP и секущей KN . Следовательно, треугольники MKN и PNK равны по стороне и двум прилежащим углам.
Тогда MK = NP .
Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.
Например, на рисунке 228 длина отрезка MK — это расстояние между параллельными прямыми a и b .
Задача. На рисунке 229 отрезок AK — биссектриса треугольника ABC , MK ‖ AC . Докажите, что треугольник AMK — равнобедренный.
Решение. Так как AK — биссектриса треугольника ABC , то ∠ MAK = ∠ KAC .
Углы KAC и MKA равны как накрест лежащие при параллельных прямых MK и AC и секущей AK . Следовательно, ∠ MAK = ∠ MKA .
Тогда треугольник AMK — равнобедренный.
- Каким свойством обладают накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей?
- Каким свойством обладают соответственные углы, образованные при пересечении двух параллельных прямых секущей?
- Чему равна сумма односторонних углов, образованных при пересечении двух параллельных прямых секущей?
- Известно, что прямая перпендикулярна одной из двух параллельных прямых. Обязательно ли она перпендикулярна другой прямой?
- Что называют расстоянием между двумя параллельными прямыми?
326. На рисунке 230 найдите угол 1.
327. На рисунке 231 найдите угол 2.
328. Разность односторонних углов, образованных при пересечении двух параллельных прямых секущей, равна 50°. Найдите эти углы.
329. Один из односторонних углов, образованных при пересечении двух параллельных прямых секущей, в 4 раза больше другого. Найдите эти углы.
330. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если:
1) один из этих углов равен 48°;
2) отношение градусных мер двух из этих углов равно 2 : 7.
331. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если один из них на 24° меньше другого.
332. На рисунке 232 m ‖ n , p ‖ k , ∠1 = 50°. Найдите ∠ 2, ∠ 3 и ∠ 4.
333. Прямая, параллельная основанию AC равнобедренного треугольника ABC , пересекает его боковые стороны AB и BC в точках D и F соответственно. Докажите, что треугольник DBF — равнобедренный.
334. На продолжениях сторон AC и BC треугольника ABC ( AB = BC ) за точки A и B отметили соответственно точки P и K так, что PK ‖ AB . Докажите, что треугольник KPC — равнобедренный.
335. Отрезки AB и CD пересекаются в точке O , AO = BO , AC ‖ BD . Докажите, что CO = DO .
336. Отрезки MK и DE пересекаются в точке F , DK ‖ ME , DK = ME . Докажите, что ∆ MEF = ∆ DKF .
337. Ответьте на вопросы.
1) Могут ли оба односторонних угла при двух параллельных прямых и секущей быть тупыми?
2) Может ли сумма накрест лежащих углов при двух параллельных прямых и секущей быть равной 180°?
3) Могут ли быть равными односторонние углы при двух параллельных прямых и секущей?
338. На рисунке 233 AB ‖ CD , BC ‖ AD . Докажите, что BC = AD .
339. На рисунке 233 BC = AD , BC ‖ AD . Докажите, что AB ‖ CD .
340. На рисунке 234 MK ‖ EF , ME = EF , ∠ KMF = 70°. Найдите ∠ MEF .
341. Через вершину B треугольника ABC (рис. 235) провели прямую MK , параллельную прямой AC , ∠ MBA = 42°, ∠ CBK = 56°. Найдите углы треугольника ABC .
342. Прямая, проведённая через вершину A треугольника ABC параллельно его противолежащей стороне, образует со стороной AC угол, равный углу BAC . Докажите, что данный треугольник — равнобедренный.
343. На рисунке 236 ∠ MAB = 50°, ∠ ABK = 130°, ∠ ACB = 40°, CE — биссектриса угла ACD . Найдите углы треугольника ACE .
344. На рисунке 237 BE ⊥ AK , CF ⊥ AK , CK — биссектриса угла FCD , ∠ ABE = 32°. Найдите ∠ ACK .
345. На рисунке 238 BC ‖ MK , BK = KE , CK = KD . Докажите, что AD ‖ MK .
346. На рисунке 239 AB = AC , AF = FE , AB ‖ EF . Докажите, что AE ⊥ BC .
347. Треугольник ABC — равнобедренный с основанием AC . Через произвольную точку M его биссектрисы BD проведены прямые, параллельные его сторонам AB и BC и пересекающие отрезок AC в точках E и F соответственно. Докажите, что DE = DF .
348. На рисунке 240 AB ‖ DE . Докажите, что ∠ BCD = ∠ ABC + ∠ CDE .
349. На рисунке 241 AB ‖ DE , ∠ ABC = 120°, ∠ CDE = 150°. Докажите, что BC ⊥ CD .
350. Через вершину B треугольника ABC провели прямую, параллельную его биссектрисе AM . Эта прямая пересекает прямую AC в точке K . Докажите, что ∆ BAK — равнобедренный.
351. Через точку O пересечения биссектрис AE и CF треугольника ABC провели прямую, параллельную прямой AC . Эта прямая пересекает сторону AB в точке M , а сторону BC — в точке K . Докажите, что MK = AM + CK .
352. Биссектрисы углов BAC и BCA треугольника ABC пересекаются в точке O . Через эту точку проведены прямые, параллельные прямым AB и BC и пересекающие сторону AC в точках M и K соответственно. Докажите, что периметр треугольника MOK равен длине стороны AC .
Упражнения для повторения
353. На отрезке AB отметили точку C так, что AC : BC = 2 : 1. На отрезке AC отметили точку D так, что AD : CD = 3 : 2. В каком отношении точка D делит отрезок AB ?
354. Отрезки AC и BD пересекаются в точке O , AB = BC = CD = AD . Докажите, что AC ⊥ BD .
355. В треугольнике MOE на стороне MO отметили точку A , в треугольнике TPK на стороне TP — точку B так, что MA = TB . Какова градусная мера угла BKP , если MO = TP , ∠ M = ∠ T , ∠ O = ∠ P , ∠ AEO = 17°?
Наблюдайте, рисуйте, конструируйте, фантазируйте
356. На рисунке 242 изображена очень сложная замкнутая ломаная. Она ограничивает некоторую часть плоскости (многоугольник). Как, отметив на рисунке любую точку, по возможности быстрее определить, принадлежит эта точка многоугольнику или нет?
Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать
Внутренние односторонние углы
Еще один вид углов, образованных при пересечении двух прямых секущей — внутренние односторонние углы.
Две прямые разбивают плоскость на части. Та часть, которая лежит между прямыми — внутренняя. Углы, которые расположены в этой части, так и называются — внутренние. Внутренние односторонние углы — это углы, которые лежат внутри между прямыми по одну сторону от секущей (поэтому они так и называются).
При пересечении двух прямых секущей образуется две пары внутренних односторонних углов.
∠1 и ∠2
∠3 и ∠4
— внутренние односторонние углы при прямых a и b и секущей c.
Наибольший интерес вызывают внутренние накрест лежащие углы, образованные параллельными прямыми.
Свойство параллельных прямых
Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180º.
Если a ∥ b, то
∠1 + ∠2 = 180º
(как внутренние односторонние при a ∥ b и секущей c).
Признак параллельных прямых
Если сумма внутренних односторонних углов равна 180º, то прямые параллельны.
∠3 + ∠4 =180º
А так как эти углы — внутренние односторонние при a и b и секущей c,
то a ∥ b (по признаку параллельных прямых).
Могут ли быть внутренние односторонние углы равны?
Да. Внутренние односторонние углы равны, если прямые параллельны, а секущая им перпендикулярна.
∠1 и ∠2 — внутренние односторонние углы при прямых a и b и секущей c
∠1 = ∠2
тогда и только тогда, когда a ∥ b, а секущая c перпендикулярна и прямой a, и прямой b.
🔥 Видео
ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать
№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать
УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать
Углы, образованные при пересечении двух прямых секущейСкачать
Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать
Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Пары углов в геометрииСкачать
№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать
Биссектриса угла параллелограмма ▶ (Мини-ликбез №5)Скачать
7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонамиСкачать
ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углыСкачать
Это пора запомнить! Свойства углов при параллельных прямых и секущей. #геометрияСкачать
ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьейСкачать
Планиметрия. Углы. Часть 3. Углы при параллельных прямых и секущей. Подготовка к ОРТ по математике.Скачать