Какое из следующих утверждений верно?
1. Площадь параллелограмма равна половине произведения его диагоналей.
2. Сумма углов прямоугольного треугольника равна 90 градусам.
3. Биссектрисы треугольника пересекаются в точке, которая является центром окружности, вписанной в треугольник.
В ответ запишите номер выбранного утверждения.
Рассмотрим каждое из утверждений:
1. Площадь параллелограмма равна половине произведения его диагоналей — неверно, площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними.
2. Сумма углов прямоугольного треугольника равна 90 градусам — неверно, сумма углов любого треугольника равна 180°
3. Биссектрисы треугольника пересекаются в точке, которая является центром окружности, вписанной в треугольник — верно по свойству треугольника.
- Свойства биссектрис треугольника
- Все, что нужно знать о треугольнике
- ТРЕУГОЛЬНИК.
- Площадь треугольника.
- Медиана треугольника
- Биссектриса треугольника
- Высота треугольника
- Теорема синусов:
- Прямоугольный треугольник
- Соотношение элементов в прямоугольном треугольнике:
- Равнобедренный треугольник.
- Правильный треугольник
- Средняя линия треугольника
- Внешний угол треугольника
- Признаки равенства треугольников:
- Признаки подобия треугольников:
- Теорема Менелая
- 📺 Видео
Видео:Почему биссектрисы треугольника пересекаются в одной точке?Скачать
Свойства биссектрис треугольника
Три биссектрисы треугольника пересекаются в одной точке, являющейся центром окружности, вписанной в треугольник
Биссектриса угла треугольника — это луч, который соединяет вершину треугольника с противоположной стороной, при этом разделяя угол на две равные части.
Биссектриса угла треугольника – это множество точек, равноудаленных от его сторон. Это значит, что от любой точки, лежащей на биссектрисе угла, расстояния до сторон угла равны.
Пусть точка О лежит на биссектрисе угла АВС. Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую, поэтому треугольники ВОС и ВОА на рисунке – прямоугольные.
Здесь отрезки ОА и ОС – расстояния от точки О до сторон ВА и ВС угла АВС.
Прямоугольные треугольники ВОС и ВОА равны по острому углу и гипотенузе. Значит, ОА = ОС и любая точка, лежащая на биссектрисе угла, равноудалена от его сторон.
Пусть биссектрисы углов А и В треугольника пересекаются в точке Р. Тогда точка Р равноудалена от сторон АВ и АС, поскольку лежит на биссектрисе угла А, а также от сторон ВС и ВА, поскольку лежит на биссектрисе угла В. А это значит, что точка Р равноудалена и от прямых АС и ВС, то есть лежит на биссектрисе угла C.
Задача ЕГЭ по теме «Биссектрисы углов треугольника»
В треугольнике ABC угол A равен , угол B равен . AD, BE и CF — биссектрисы, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.
Найдем третий угол треугольника ABC – угол C. Он равен .
Заметим, что в треугольнике AOC острые углы равны половинкам углов CAB и ACB, то есть и .
Угол AOF – внешний угол треугольника AOC. Он равен сумме внутренних углов, не смежных с ним, то есть .
Видео:Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать
Все, что нужно знать о треугольнике
При решении геометрических задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо
- Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
- Нанести все данные из условия задачи на чертеж
- Выписать все геометрические понятия, которые встречаются в задаче
- Вспомнить все теоремы, которые относятся к этим понятию
- Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем
Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы и обозначить на чертеже равные или пропорциональные отрезки и углы.
В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.
ТРЕУГОЛЬНИК.
Площадь треугольника.
1. ,
здесь — произвольная сторона треугольника, — высота, опущенная на эту сторону.
2. ,
здесь и — произвольные стороны треугольника, — угол между этими сторонами:
3. Формула Герона:
— здесь — длины сторон треугольника, — полупериметр треугольника,
4. ,
здесь — полупериметр треугольника, — радиус вписанной окружности.
Пусть — длины отрезков касательных.
Тогда формулу Герона можно записать в таком виде:
5.
6. ,
здесь — длины сторон треугольника, — радиус описанной окружности.
Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Медиана треугольника
— это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.
Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.
Радиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r
Длина медианы произвольного треугольника вычисляется по формуле:
,
здесь — медиана, проведенная к стороне , — длины сторон треугольника.
Биссектриса треугольника
— это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.
Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:
Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.
Все точки биссектрисы угла равноудалены от сторон угла.
Высота треугольника
— это отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону, или ее продолжение. В тупоугольном треугольнике высота, проведенная из вершины острого угла лежит вне треугольника.
Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.
Чтобы найти высоту треугольника, проведенную к стороне , нужно любым доступным способом найти его площадь, а затем воспользоваться формулой:
Центр окружности, описанной около треугольника, лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника.
Радиус описанной окружности треугольника можно найти по таким формулам:
— здесь — длины сторон треугольника, — площадь треугольника.
,
где — длина стороны треугольника, — противолежащий угол. (Эта формула вытекает из теоремы синусов).
Неравенство треугольника
Каждая сторона треугольника меньше суммы и больше разности двух других.
Сумма длин любых двух сторон всегда больше длины третьей стороны:
c» title=»a+b>c»/>
Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:
Если , то и наоборот.
Теорема синусов:
стороны треугольника пропорциональны синусам противолежащих углов:
Теорема косинусов:
квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:
Прямоугольный треугольник
— это треугольник, один из углов которого равен 90°.
Сумма острых углов прямоугольного треугольника равна 90°.
Гипотенуза — это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.
Теорема Пифагора:
квадрат гипотенузы равен сумме квадратов катетов:
Радиус окружности, вписанной в прямоугольный треугольник, равен
,
здесь — радиус вписанной окружности, — катеты, — гипотенуза:
Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.
Определение синуса, косинуса , тангенса и котангенса прямоугольного треугольника смотрите здесь.
Соотношение элементов в прямоугольном треугольнике:
Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:
Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:
:
Катет, лежащий против угла равен половине гипотенузы:
Равнобедренный треугольник.
Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.
В равнобедренном треугольнике углы при основании равны.
— угол при вершине.
и — боковые стороны,
и — углы при основании.
— высота, биссектриса и медиана.
Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.
Правильный треугольник
(или равносторонний треугольник ) — это треугольник, все стороны и углы которого равны между собой.
Площадь правильного треугольника равна
,
где — длина стороны треугольника.
Центр окружности, вписанной в правильный треугольник, совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.
Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.
Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.
Средняя линия треугольника
— это отрезок, соединяющий середины двух сторон.
На рисунке DE — средняя линия треугольника ABC.
Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC, AC=2DE
Внешний угол треугольника
— это угол, смежный какому либо углу треугольника.
Внешний угол треугольника равен сумме двух углов, не смежных с ним.
Тригонометрические функции внешнего угла:
Признаки равенства треугольников:
1 . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2 . Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
3 Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Важно: поскольку в прямоугольном треугольнике два угла заведомо равны, то для равенства двух прямоугольных треугольников требуется равенство всего двух элементов: двух сторон, или стороны и острого угла.
Признаки подобия треугольников:
1 . Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.
2 . Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.
3 . Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.
Важно: в подобных треугольниках сходственные стороны лежат против равных углов.
Теорема Менелая
Пусть прямая пересекает треугольник , причем – точка ее пересечения со стороной , – точка ее пересечения со стороной , и – точка ее пересечения с продолжением стороны . Тогда
📺 Видео
Биссектрисы треугольника пересекаются в центре ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Серединные перпендикуляры к сторонам треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Секретная формула биссектрисы треугольника плюс Задача из экзамена 9 классСкачать
Как доказать, что биссектрисы треугольника пересекаются в одной точке?Скачать
Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать
№677. Биссектрисы внешних углов при вершинах В и С треугольника ABC пересекаются в точке ОСкачать
Биссектрисы пересекаются в одной точке| Задачи 11-20 | Решение задач | Волчкевич|Уроки геометрии 7-8Скачать
Свойство биссектрисы треугольника с доказательствомСкачать
ОГЭ Задание 24 Свойство биссектрисы треугольникаСкачать
Биссектрисы пересекаются в одной точке| Задачи 1-10 | Решение задач | Волчкевич| Уроки геометрии 7-8Скачать
Почему серединные перпендикуляры пересекаются в одной точке? | Vasily mathsСкачать
Формула для биссектрисы треугольникаСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Геометрия. 8 класс. Урок 8 "Биссектриса как ГМТ. Вписанная и вневписанная окружности треугольника"Скачать
ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Вписанная и описанная около равнобедренного треугольника, окружностьСкачать