Задание 25. Биссектриса СМ треугольника ABC делит сторону АВ на отрезки AM = 4 и MB = 9. Касательная к окружности, описанной около треугольника ABC, проходит через точку C и пересекает прямую АВ в точке D. Найдите CD.
- Вариант 1
- Вариант 1. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 2
- Вариант 2. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 3
- Вариант 3. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 4
- Вариант 4. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
- 1-5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- Вариант 5
- Вариант 5. Задания по ОГЭ 2021. Математика. И.В. Ященко. 36 вариантов
- Решения заданий по номерам
Внимание! Нумерация заданий в сборнике 2021 отличается от сборника 2020
- Вариант 7
- Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 8
- Задания 1-5 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 9
- Задания 1-5 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 3. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 10
- Задания 1-5 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 11
- Задания 1-5 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 12
- Задания 1-5 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 6. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 13
- Задания 1-5 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 7. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 14
- Задания 1-5 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 8. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 15
- Задания 1-5 полностью совпадают с Вариант 35. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 9. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 16
- Задания 1-5 полностью совпадают с Вариант 36. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 10. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 17
- Задания 6-25 полностью совпадают с Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 14
- Вариант 18
- Задания 6-25 полностью совпадают с Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 14
- Вариант 19
- Задания 1-5 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 20
- Задания 1-5 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 21
- Задания 1-5 полностью совпадают с Вариант 29. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 22
- Задания 1-5 полностью совпадают с Вариант 30. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 23
- Задания 1-5 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 24
- Задания 1-5 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 25
- Задания 1-5 полностью совпадают с Вариант 27. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 26
- Задания 1-5 полностью совпадают с Вариант 28. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 27
- Задания 1-5 полностью совпадают с Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 28
- Задания 1-5 полностью совпадают с Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 22. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 29
- Задания 6-25 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 8
- 14
- Вариант 30
- Задания 6-25 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 1-5
- 8
- 14
- Вариант 31
- Задания 1-5 полностью совпадают с Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 25. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 32
- Задания 1-5 полностью совпадают с Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 26. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 33
- Задания 1-5 полностью совпадают с Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 34
- Задания 1-5 полностью совпадают с Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 14
- Вариант 35
- Задания 1-5 полностью совпадают с Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 33. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Вариант 36
- Задания 1-5 полностью совпадают с Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Задания 6-25 полностью совпадают с Вариант 34. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
- Кроме заданий:
- 8
- 14
- Окружность. Основные теоремы
- Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
- Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
- Формулы для радиуса окружности, вписанной в треугольник
- Вывод формул для радиуса окружности, вписанной в треугольник
- 🎦 Видео
Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать
Окружность. Основные теоремы
Определения
Центральный угол – это угол, вершина которого лежит в центре окружности.
Вписанный угол – это угол, вершина которого лежит на окружности.
Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.
Теорема
Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Доказательство
Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка (B) – вершина вписанного угла (ABC) и (BC) – диаметр окружности:
Треугольник (AOB) – равнобедренный, (AO = OB) , (angle AOC) – внешний, тогда (angle AOC = angle OAB + angle ABO = 2angle ABC) , откуда (angle ABC = 0,5cdotangle AOC = 0,5cdotbuildrelsmileover) .
Теперь рассмотрим произвольный вписанный угол (ABC) . Проведём диаметр окружности (BD) из вершины вписанного угла. Возможны два случая:
1) диаметр разрезал угол на два угла (angle ABD, angle CBD) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.
2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла (angle ABD, angle CBD) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.
Следствия
1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.
2. Вписанный угол, опирающийся на полуокружность, прямой.
3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.
Определения
Существует три типа взаимного расположения прямой и окружности:
1) прямая (a) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние (d) от центра окружности до прямой меньше радиуса (R) окружности (рис. 3).
2) прямая (b) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка (B) – точкой касания. В этом случае (d=R) (рис. 4).
3) прямая (c) не имеет общих точек с окружностью (рис. 5).
Теорема
1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.
Следствие
Отрезки касательных, проведенных из одной точки к окружности, равны.
Доказательство
Проведем к окружности из точки (K) две касательные (KA) и (KB) :
Значит, (OAperp KA, OBperp KB) как радиусы. Прямоугольные треугольники (triangle KAO) и (triangle KBO) равны по катету и гипотенузе, следовательно, (KA=KB) .
Следствие
Центр окружности (O) лежит на биссектрисе угла (AKB) , образованного двумя касательными, проведенными из одной точки (K) .
Теорема об угле между секущими
Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.
Доказательство
Пусть (M) – точка, из которой проведены две секущие как показано на рисунке:
Покажем, что (angle DMB = dfrac(buildrelsmileover — buildrelsmileover)) .
(angle DAB) – внешний угол треугольника (MAD) , тогда (angle DAB = angle DMB + angle MDA) , откуда (angle DMB = angle DAB — angle MDA) , но углы (angle DAB) и (angle MDA) – вписанные, тогда (angle DMB = angle DAB — angle MDA = fracbuildrelsmileover — fracbuildrelsmileover = frac(buildrelsmileover — buildrelsmileover)) , что и требовалось доказать.
Теорема об угле между пересекающимися хордами
Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: [angle CMD=dfrac12left(buildrelsmileover+buildrelsmileoverright)]
Доказательство
(angle BMA = angle CMD) как вертикальные.
Из треугольника (AMD) : (angle AMD = 180^circ — angle BDA — angle CAD = 180^circ — frac12buildrelsmileover — frac12buildrelsmileover) .
Но (angle AMD = 180^circ — angle CMD) , откуда заключаем, что [angle CMD = frac12cdotbuildrelsmileover + frac12cdotbuildrelsmileover = frac12(buildrelsmileover + buildrelsmileover).]
Теорема об угле между хордой и касательной
Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.
Доказательство
Пусть прямая (a) касается окружности в точке (A) , (AB) – хорда этой окружности, (O) – её центр. Пусть прямая, содержащая (OB) , пересекает (a) в точке (M) . Докажем, что (angle BAM = frac12cdot buildrelsmileover) .
Обозначим (angle OAB = alpha) . Так как (OA) и (OB) – радиусы, то (OA = OB) и (angle OBA = angle OAB = alpha) . Таким образом, (buildrelsmileover = angle AOB = 180^circ — 2alpha = 2(90^circ — alpha)) .
Так как (OA) – радиус, проведённый в точку касания, то (OAperp a) , то есть (angle OAM = 90^circ) , следовательно, (angle BAM = 90^circ — angle OAB = 90^circ — alpha = frac12cdotbuildrelsmileover) .
Теорема о дугах, стягиваемых равными хордами
Равные хорды стягивают равные дуги, меньшие полуокружности.
И наоборот: равные дуги стягиваются равными хордами.
Доказательство
1) Пусть (AB=CD) . Докажем, что меньшие полуокружности дуги (buildrelsmileover=buildrelsmileover) .
(triangle AOB=triangle COD) по трем сторонам, следовательно, (angle AOB=angle COD) . Но т.к. (angle AOB, angle COD) — центральные углы, опирающиеся на дуги (buildrelsmileover, buildrelsmileover) соответственно, то (buildrelsmileover=buildrelsmileover) .
2) Если (buildrelsmileover=buildrelsmileover) , то (triangle AOB=triangle COD) по двум сторонам (AO=BO=CO=DO) и углу между ними (angle AOB=angle COD) . Следовательно, и (AB=CD) .
Теорема
Если радиус делит хорду пополам, то он ей перпендикулярен.
Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.
Доказательство
1) Пусть (AN=NB) . Докажем, что (OQperp AB) .
Рассмотрим (triangle AOB) : он равнобедренный, т.к. (OA=OB) – радиусы окружности. Т.к. (ON) – медиана, проведенная к основанию, то она также является и высотой, следовательно, (ONperp AB) .
2) Пусть (OQperp AB) . Докажем, что (AN=NB) .
Аналогично (triangle AOB) – равнобедренный, (ON) – высота, следовательно, (ON) – медиана. Следовательно, (AN=NB) .
Теорема о произведении отрезков хорд
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Доказательство
Пусть хорды (AB) и (CD) пересекаются в точке (E) .
Рассмотрим треугольники (ADE) и (CBE) . В этих треугольниках углы (1) и (2) равны, так как они вписанные и опираются на одну и ту же дугу (BD) , а углы (3) и (4) равны как вертикальные. Треугольники (ADE) и (CBE) подобны (по первому признаку подобия треугольников).
Тогда (dfrac = dfrac) , откуда (AEcdot BE = CEcdot DE) .
Теорема о касательной и секущей
Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.
Доказательство
Пусть касательная проходит через точку (M) и касается окружности в точке (A) . Пусть секущая проходит через точку (M) и пересекает окружность в точках (B) и (C) так что (MB . Покажем, что (MBcdot MC = MA^2) .
Рассмотрим треугольники (MBA) и (MCA) : (angle M) – общий, (angle BCA = 0,5cdotbuildrelsmileover) . По теореме об угле между касательной и секущей, (angle BAM = 0,5cdotbuildrelsmileover = angle BCA) . Таким образом, треугольники (MBA) и (MCA) подобны по двум углам.
Из подобия треугольников (MBA) и (MCA) имеем: (dfrac = dfrac) , что равносильно (MBcdot MC = MA^2) .
Следствие
Произведение секущей, проведённой из точки (O) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки (O) :
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла |
Формулы для радиуса окружности, вписанной в треугольник |
Вывод формул для радиуса окружности, вписанной в треугольник |
Видео:8 класс, 32 урок, Касательная к окружностиСкачать
Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.
Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).
Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).
Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,
что и требовалось доказать.
Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.
Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.
Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).
Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно
что и требовалось доказать.
Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.
Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.
Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.
Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).
Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:
Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:
Следовательно, справедливо равенство:
откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать
Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .
Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.
Видео:Построение биссектрисы угла. 7 класс.Скачать
Формулы для радиуса окружности, вписанной в треугольник
Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.
Фигура | Рисунок | Формула | Обозначения | |||||||||||||||||||
Произвольный треугольник | ||||||||||||||||||||||
Равнобедренный треугольник | ||||||||||||||||||||||
Равносторонний треугольник | ||||||||||||||||||||||
Прямоугольный треугольник |
Произвольный треугольник | ||
Равнобедренный треугольник | ||
Равносторонний треугольник | ||
Прямоугольный треугольник | ||
Произвольный треугольник |
где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.
где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.
где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Вывод формул для радиуса окружности, вписанной в треугольник
Теорема 5 . Для произвольного треугольника справедливо равенство
где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).
с помощью формулы Герона получаем:
что и требовалось.
Теорема 6 . Для равнобедренного треугольника справедливо равенство
где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).
то, в случае равнобедренного треугольника, когда
что и требовалось.
Теорема 7 . Для равностороннего треугольника справедливо равенство
где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).
то, в случае равностороннего треугольника, когда
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.
Теорема 8 . Для прямоугольного треугольника справедливо равенство
Доказательство . Рассмотрим рисунок 9.
Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,
В силу теоремы 3 справедливы равенства
Следовательно, принимая также во внимание теорему Пифагора, получаем
что и требовалось.
Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.
🎦 Видео
Построение биссектрисы углаСкачать
Урок по теме КАСАТЕЛЬНАЯ К ОКРУЖНОСТИСкачать
ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Касательные к окружностиСкачать
Построение касательной к окружности.Скачать
Окружность касается сторон параллелограмма и биссектрисы.Скачать
Построение касательной к окружностиСкачать
Секущая и касательная. 9 класс.Скачать
Геометрия. Задача. Окружности. Касательные. Радиус.Скачать
Высота, биссектриса, медиана. 7 класс.Скачать
8 класс, 35 урок, Свойства биссектрисы углаСкачать
Построение биссектрисы углаСкачать
Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать
Биссектриса за 20 секунд #огэ #огэматематика #математикаСкачать
Свойство биссектрисы внешнего угла треугольникаСкачать