3 вектора а плюс 2 вектора б

Сложение и вычитание векторов
Содержание
  1. Формулы сложения и вычитания векторов
  2. Формулы сложения и вычитания векторов для плоских задач
  3. Формулы сложения и вычитания векторов для пространчтвенных задач
  4. Формулы сложения и вычитания n -мерных векторов
  5. Примеры задач на сложение и вычитание векторов
  6. Примеры плоских задач на сложение и вычитание векторов
  7. Примеры пространственных задач на сложение и вычитание векторов
  8. Примеры задач на сложение и вычитание векторов с размерностью большей 3
  9. Сложение и вычитание векторов
  10. Сумма векторов. Сложение векторов. Правило треугольника
  11. Разность векторов. Вычитание векторов
  12. Умножение вектора на число
  13. Векторное произведение векторов онлайн
  14. Предупреждение
  15. Векторное произведение векторов
  16. Геометрические свойства векторного произведения векторов
  17. Векторное произведение векторов в декартовых координатах
  18. Векторное произведение векторов на примерах

Формулы сложения и вычитания векторов

Формулы сложения и вычитания векторов для плоских задач

В случае плоской задачи сумму и разность векторов a = < ax ; ay > и b = < bx ; by > можно найти, воспользовавшись следующими формулами:

Формулы сложения и вычитания векторов для пространчтвенных задач

В случае пространственной задачи сумму и разность векторов a = < ax ; ay ; az > и b = < bx ; by ; bz > можно найти, воспользовавшись следующими формулами:

Формулы сложения и вычитания n -мерных векторов

В случае n -мерного пространства сумму и разность векторов a = < a 1 ; a 2 ; . ; an > и b = < b 1 ; b 2 ; . ; bn > можно найти, воспользовавшись следующими формулами:

Примеры задач на сложение и вычитание векторов

Примеры плоских задач на сложение и вычитание векторов

Примеры пространственных задач на сложение и вычитание векторов

Примеры задач на сложение и вычитание векторов с размерностью большей 3

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Сложение и вычитание векторов

3 вектора а плюс 2 вектора б

Теорема 1 От любой точки ( K ) можно отложить вектор единственный ( overrightarrow ) .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором ( overrightarrow ) .

3 вектора а плюс 2 вектора б

Из данного выше построения сразу же будет следовать единственность данного вектора.

Сумма векторов. Сложение векторов. Правило треугольника

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

3 вектора а плюс 2 вектора б

Суммой нескольких векторов ( vec ) , ( vec ) , ( vec,;ldots ) называется вектор ( vec ) , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

3 вектора а плюс 2 вектора б

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
( vec + vec = left( <+ , + , + > right) )

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора ( overrightarrow ) выполняется равенство

Для произвольных точек ( A, B и C ) справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

3 вектора а плюс 2 вектора б

Разность векторов. Вычитание векторов

3 вектора а плюс 2 вектора б

Разность двух одинаковых векторов равна нулевому вектору :
( vec — vec = vec )

Длина нулевого вектора равна нулю:
( left| vec right| = 0 )

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
( vec — vec = left( <- , — , — > right) )

Умножение вектора на число

Пусть нам дан вектор ( overrightarrow ) и действительное число ( k ) .

Определение Произведением вектора ( overrightarrow ) на действительное число ( k ) называется вектор ( overrightarrow ) удовлетворяющий следующим условиям:

Длина вектора ( overrightarrow ) равна ( left|overrightarrowright|=left|kright||overrightarrow| ) ;

Векторы ( overrightarrow ) и ( overrightarrow ) сонаправлены, при ( kge 0 ) и противоположно направлены, если ( kle 0 )

Обозначение: ( overrightarrow=koverrightarrow ) .

Векторное произведение векторов онлайн

Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Векторное произведение векторов

Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.

Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.

Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.

Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.

Определение 2 можно формулировать и по другому.

Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).

Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.

3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б

Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.

Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:

Векторное произведение векторов обладает следующими свойствами:

Геометрические свойства векторного произведения векторов

Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.

Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.

Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).

Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.

Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.

Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:

S=|[ab]|=|a||b|sinφ.(2)

Векторное произведение векторов в декартовых координатах

Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами

a=<x1, y1, z1>, b=<x2, y2, z2>.

Тогда векторное произведение этих векторов имеет вид:

[ab]=<y1z2y2z1, z1x2z2x1, x1y2x2y1>.(3)

Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:

3 вектора а плюс 2 вектора б

Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).

Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:

3 вектора а плюс 2 вектора б(4)
3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б

Из последнего равенства и соотношений (4), получим:

3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б

которая эквивалентна равенству (3).

Векторное произведение векторов на примерах

Пример 1. Найти векторное произведение векторов [ab], где

3 вектора а плюс 2 вектора б, 3 вектора а плюс 2 вектора б.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

3 вектора а плюс 2 вектора б.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

3 вектора а плюс 2 вектора б.

Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: 3 вектора а плюс 2 вектора б, конечная точка вектора a: 3 вектора а плюс 2 вектора б, вектор b имеет вид 3 вектора а плюс 2 вектора б.

Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:

3 вектора а плюс 2 вектора б.

Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:

3 вектора а плюс 2 вектора б.

Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:

3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б3 вектора а плюс 2 вектора б.

Таким образом, результатом векторного произведения векторов a и b будет вектор:

Поделиться или сохранить к себе: