26 сформулируйте свойства медиан треугольника

Медиана треугольника

Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

26 сформулируйте свойства медиан треугольника

Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

На рисунке 1 медианой является отрезок BD .

Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).

Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

26 сформулируйте свойства медиан треугольника

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника

Поскольку отрезок BD является медианой, то

26 сформулируйте свойства медиан треугольника

что и требовалось доказать.

Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.

Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).

26 сформулируйте свойства медиан треугольника

Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

26 сформулируйте свойства медиан треугольника

Теперь рассмотрим четырёхугольник FEDG (рис. 5).

26 сформулируйте свойства медиан треугольника

Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,

26 сформулируйте свойства медиан треугольника

Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника

Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.

Следствие . Все три медианы треугольника пересекаются в одной точке.

Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).

26 сформулируйте свойства медиан треугольника

Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

Определение . Точку пересечения медиан треугольника называют центроидом треугольника.

Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

26 сформулируйте свойства медиан треугольника

Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна 26 сформулируйте свойства медиан треугольникаплощади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

Видео:8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Определение и свойства медианы треугольника

В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.

Видео:🔥 Свойства МЕДИАНЫ #shortsСкачать

🔥 Свойства МЕДИАНЫ #shorts

Определение медианы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.

26 сформулируйте свойства медиан треугольника

Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).

Видео:ГЕОМЕТРИЯ 8 класс. Свойство медиан треугольникаСкачать

ГЕОМЕТРИЯ 8 класс. Свойство медиан треугольника

Свойства медианы

Свойство 1 (основное)

Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.

26 сформулируйте свойства медиан треугольника

В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:

Свойство 2

Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.

26 сформулируйте свойства медиан треугольника

Свойство 3

Три медианы делят треугольник на 6 равновеликих треугольников.

26 сформулируйте свойства медиан треугольника

Свойство 4

Наименьшая медиана соответствует большей стороне треугольника, и наоборот.

26 сформулируйте свойства медиан треугольника

  • AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
  • AB – самая короткая сторона, следовательно, медиана CD – самая длинная.

Свойство 5

Допустим, известны все стороны треугольника (примем их за a, b и c).

26 сформулируйте свойства медиан треугольника

Длину медианы ma, проведенную к стороне a, можно найти по формуле:

26 сформулируйте свойства медиан треугольника

Видео:Медиана треугольника. Построение. Свойства.Скачать

Медиана треугольника. Построение. Свойства.

Примеры задач

Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.

Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S = 5 см 2 ⋅ 6 = 30 см 2 .

Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.

Решение
Воспользуемся формулой, приведенной в свойстве 5:

Видео:Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать

Свойство медианы в прямоугольном треугольнике. 8 класс.

Свойство медиан треугольника

Свойство медиан треугольника может быть доказано многими способами. Доказательство, опирающееся на свойства параллелограмма и средней линии треугольника, может быть проведено сразу же после изучения соответствующих тем, что позволяет начать использовать свойство медиан треугольника уже с начала 8 класса.

(Свойство медиан треугольника)

Медианы треугольника пересекаются и в точке пересечения делятся в отношении 2:1, считая от вершины.

26 сформулируйте свойства медиан треугольникаДано : ABC, AA1, BB1, CC1 — медианы

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника1) Пусть M — середина отрезка AO, N — середина BO

(то есть AM=OM, BN=ON).

2) Соединим точки M, N, A1 и B1 отрезками.

26 сформулируйте свойства медиан треугольника

3) Так как AA1 и BB1 — медианы треугольника ABC, точка A1- середина отрезка BC, B1 — середина AC.

Следовательно, A1B1 — средняя линия треугольника ABC и

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника

Значит, четырёхугольник MNA1B1 — параллелограмм (по признаку).

По свойству диагоналей параллелограмма

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника

26 сформулируйте свойства медиан треугольника

из чего следует, что

26 сформулируйте свойства медиан треугольника

5) Доказательство того факта, что все медианы треугольника пересекаются в одной точке, будем вести методом от противного.

Предположим, что третья медиана CC1 треугольника ABC пересекает медианы AA1 и BB1 в некоторой точке, отличной от точки O.

Тогда на каждой медиане есть две различные точки, делящие её в отношении 2:1, считая от вершины. Пришли к противоречию.

Таким образом, все три медианы треугольника пересекаются в одной точке и точка пересечения медиан делит каждую из их в отношении 2:1, считая от вершины:

26 сформулируйте свойства медиан треугольника

Что и требовалось доказать .

Видео:Урок 33. Свойство медиан треугольника (8 класс)Скачать

Урок 33.  Свойство медиан треугольника (8 класс)

7 Comments

Промогите пожалуйста:
В прямоугольном треугольнике из вершины прямого угла до гипотенузы провели медиану длинной 50см и перпендикуляр 48см. Вычислить периметр.

Медиана, проведённая к гипотенузе, равна её половине. Следовательно, гипотенуза 100 см. Пусть катеты равны x см и y см. По теореме Пифагора x²+y²=100². Площадь треугольника равна половине произведения стороны на высоту, проведённую к этой стороне S=0,5∙100∙48 см², либо половине произведения катетов S=0,5∙x∙y. Отсюда xy=4800.
Решаем систему уравнений: x²+y²=100²; xy=4800. Решения (60;80) (80;60). То есть катеты 60 см и 80 см. Периметр P=60+80+100=240 см.
(Не обязательно доводить решение системы до конца. Достаточно найти x+y. Для этого к 1-му уравнению прибавим удвоенное 2-е, получим
x²+2xy+y²=19600; x+y=140).

Прошу помощи в решении задачи: на стороне ромба построен равносторонний треугольник. Отрезок, соединяющий точку пересечения диагоналей ромба с серединой стороны треугольника, составляет с ней угол 70 градусов. Найти острый угол ромба.

Во-первых, большое спасибо за решение, даже не ожидала ответа, но, по счастью, ошиблась! Но я к этому времени уже решила так:провела ВМ, которая в равностороннем треугольнике является также высотой.
Рассмотрим четырехугольник ОВМС: угол ВОС =углу ВМС=90 градусов (диагонали ромба взаимно перпендикулярны),отсюда, ВМ параллельна ОС, тогда угол МОС=20 градусам. Рассм. треугольник ОМС: угол МСО= 180-20-70=90 градусов, и одновременно= 60+x, т.о., угол х=30 градусам, и искомый острый угол ромба=60 градусам. Мы получили разные ответы, в чем может быть дело (окружности мы еще не проходили).

Наталия углы BOC и BMC не накрест лежащие и не внутренние односторонние, поэтому BM не параллельна OC. Но вариант решения без окружности возможен, добавила второй способ.

🔥 Видео

Все свойства медианы в одной задаче.Скачать

Все свойства медианы в одной задаче.

Точка пересечения медиан в треугольникеСкачать

Точка пересечения медиан в треугольнике

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Длина медианы треугольникаСкачать

Длина медианы треугольника

Свойства медиан, биссектрис и высот 🔺️Скачать

Свойства медиан, биссектрис и высот 🔺️

Теорема о свойстве медианы равнобедренного треугольникаСкачать

Теорема о свойстве медианы равнобедренного треугольника

Супер свойство медианы 👌🏻Скачать

Супер свойство медианы 👌🏻

Свойство биссектрисы треугольника с доказательствомСкачать

Свойство биссектрисы треугольника с доказательством

Геометрия. 7 класс. Теоремы. Т6. Второе свойство равнобедренного треугольника.Скачать

Геометрия. 7 класс. Теоремы. Т6. Второе свойство равнобедренного треугольника.

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Теорема о трёх медианахСкачать

Теорема о трёх медианах
Поделиться или сохранить к себе: