2 прямые которые не пересекаются и не параллельны скрещиваются

Параллельность и перпендикулярность прямых и плоскостей в пространстве

Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются. Прямые, которые не пересекаются и не лежат в одной плоскости называются скрещивающимися. Прямая и плоскость в пространстве называются параллельными, если они не пересекаются.

Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.

2 прямые которые не пересекаются и не параллельны скрещиваются

2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются

Две плоскости называются параллельными, если они не пересекаются.

Если две параллельные плоскости пересекаются третьей плоскостью, то прямые пересечения плоскостей параллельны. Через точку, не лежащую в данной плоскости, можно провести параллельную плоскость, и притом только одну.

2 прямые которые не пересекаются и не параллельны скрещиваются

2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются, так как 2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются

Отрезки параллельных прямых между параллельными плоскостями равны.

2 прямые которые не пересекаются и не параллельны скрещиваются

2 прямые которые не пересекаются и не параллельны скрещиваются= 2 прямые которые не пересекаются и не параллельны скрещиваются= 2 прямые которые не пересекаются и не параллельны скрещиваются

Прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом. Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой в плоскости, проходящей через точку их пересечения.

2 прямые которые не пересекаются и не параллельны скрещиваются

Прямая, пересекающая плоскость, перпендикулярна плоскости, если она перпендикулярна двум прямым в плоскости, проходящим через точку их пересечения.

2 прямые которые не пересекаются и не параллельны скрещиваются.

Через каждую точку плоскости можно провести перпендикулярную ей прямую, и только одну. Все прямые, перпендикулярные данной плоскости, параллельны.

Перпендикуляр, опущенный из данной точки на данную плоскость, — это отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, которая перпендикулярна плоскости. Основание перпендикуляра — это его конец, лежащий в плоскости.

Расстояние от точки до плоскости — это длина перпендикуляра, опущенного от этой точки на плоскость.

Наклонная, проведенная из данной точки к данной плоскости, — это любой отрезок, соединяющий данную точку с точкой плоскости, который не является перпендикуляром к плоскости. Конец отрезка, который лежит в плоскости, — это основание наклонной. Проекция наклонной — это отрезок, который соединяет основания перпендикуляра (точку С) и наклонной (точку А).

2 прямые которые не пересекаются и не параллельны скрещиваются

Если прямая, проведённая на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и наклонной. И обратно, если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.

2 прямые которые не пересекаются и не параллельны скрещиваются

Две пересекающиеся плоскости называются перпендикулярными, если плоскость, перпендикулярная прямой их пересечения, пересекает данные плоскости по перпендикулярным прямым.

2 прямые которые не пересекаются и не параллельны скрещиваются

Так как 2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются, то 2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются2 прямые которые не пересекаются и не параллельны скрещиваются.

Поделись с друзьями в социальных сетях:

Видео:Параллельные, пересекающиеся и скрещивающиеся прямые | МатематикаСкачать

Параллельные, пересекающиеся и скрещивающиеся прямые | Математика

Скрещивающиеся прямые

Скрещивающиеся прямые – прямые, которые невозможно поместить в одну плоскость, то есть они не параллельны и не пересекаются.

2 прямые которые не пересекаются и не параллельны скрещиваются

Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

Признак скрещивающихся прямых

Если одна из прямых лежит в плоскости, а вторая пересекает эту плоскость в точке, отличной от точек первой прямой, то такие прямые – скрещивающиеся .

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Расстояние между скрещивающимися прямыми

2 прямые которые не пересекаются и не параллельны скрещиваются

Через две скрещивающиеся прямые можно провести две параллельные плоскости (единственным образом).

Расстояние между скрещивающимися прямыми – есть расстояние между этими плоскостями.

Видео:Скрещивающиеся прямыеСкачать

Скрещивающиеся прямые

Общий перпендикуляр к двум скрещивающимся прямым

2 прямые которые не пересекаются и не параллельны скрещиваются

Общим перпендикуляром к двум скрещивающимся прямым называется отрезок, перпендикулярный каждой из двух скрещивающихся прямых, концы которого лежат на этих прямых.

Длина общего перпендикуляра равна расстоянию между скрещивающимися прямыми.

Видео:№94. Даны две скрещивающиеся прямые и точка В, не лежащая на этих прямых. Пересекаются ли плоскостиСкачать

№94. Даны две скрещивающиеся прямые и точка В, не лежащая на этих прямых. Пересекаются ли плоскости

Угол между скрещивающимися прямыми

Углом между двумя скрещивающимися прямыми называется угол между двумя пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым.

(Одну из прямых можно вполне и не переносить параллельно самой себе, а ограничиться только параллельным переносом одной из прямых до пересечения со второй).

2 прямые которые не пересекаются и не параллельны скрещиваются

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Стереометрия для ЕГЭ: 2 - параллельные и скрещивающиеся прямыеСкачать

Стереометрия для ЕГЭ: 2 - параллельные и скрещивающиеся прямые

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №5. Взаимное расположение прямых в пространстве

Перечень вопросов, рассматриваемых в теме

  1. признаки скрещивающихся прямых;
  2. определение углов с сонаправленными сторонами;
  3. доказательство теоремы о плоскости, проходящей через одну из скрещивающихся прямых;
  4. доказательство теоремы о равенстве углов с сонаправленными сторонами.

Глоссарий по теме

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Два отрезка называются параллельными, если они лежат на паралельных прямых.

  1. Учебник Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия 10-11 кл.– М.: Просвещение, 2014.
  1. Зив Б.Г. Дидактические материалы Геометрия 10 кл.– М.: Просвещение, 2014.
  2. Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь Геометрия 10 кл.-М.: Просвещение, 2013.

Открытый электронный ресурс:

Теоретический материал для самостоятельного изучения

Мы уже знаем, что прямы в пространстве могут располагаться параллельно или пересекаться. Существует еще один вид- скрещивающиеся прямые. С ним мы мимолетно познакомились на предыдущем уроке. А сегодня нам предстоит разобраться с этой темой более подробно.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости. (рис. 1)

2 прямые которые не пересекаются и не параллельны скрещиваются

Рисунок 1 – скрещивающиеся прямые

На прошлом уроке в качестве наглядного примера нами был приведен куб.

Сегодня предлагаем вам обратить внимание на окружающую вас обстановку и найти в ней скрещивающиеся прямые.

Примеры скрещивающихся прямых вокруг нас:

Одна дорога проходит по эстакаде, а другая под эстакадой

2 прямые которые не пересекаются и не параллельны скрещиваются

2 прямые которые не пересекаются и не параллельны скрещиваются

Горизонтальные линии крыши и вертикальные линии стен

2 прямые которые не пересекаются и не параллельны скрещиваются

Разберем и докажем теорему, которая выражает признак скрещивающихся прямых.

Теорема. Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся (не лежат в одной плоскости).

Доказательство.
Рассмотрим прямую AB лежащую в плоскости и прямую CD, которая пересекает плоскoсть в точке D, не лежащей на прямой AB (рис. 2).

  1. Допустим, что прямые AB и CD всё-таки лежат в одной плоскости.
    2. Значит эта плоскость идёт через прямую AB и точку D, то есть она совпадает с плоскостью α.
    3. Это противоречит условиям теоремы, что прямая CD не находится в плоскости α, а пересекает её.
    Теорема доказана.

2 прямые которые не пересекаются и не параллельны скрещиваются

Рисунок 2 – скрещивающиеся прямые АВ и СD

Итак, возможны три случая расположения прямых в пространстве:

2 прямые которые не пересекаются и не параллельны скрещиваются

2 прямые которые не пересекаются и не параллельны скрещиваются

2 прямые которые не пересекаются и не параллельны скрещиваются

Разберем и докажем еще одну теорему о скрещивающихся прямых.

Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Доказательство
Рассмотрим скрещивающиеся прямые AB и CD.(рис. 3)

1. Через точку D можно провести прямую DE параллельную AB.
2. Через пересекающиеся прямые CD и DE можно провести плоскость α
3. Так как прямая АB не лежит в этой плоскости и параллельна прямой DE, то она параллельна плоскости.

4. Эта плоскость единственная, так как любая другая плоскость, проходящая через CD, будет пересекаться с DE и AB, которая ей параллельна.
Теорема доказана.

2 прямые которые не пересекаются и не параллельны скрещиваются

Рисунок 3 – прямые АВ, СD, DЕ

Любая прямая, например ОО1, рассекает плоскость на две полуплоскости. Если лучи ОА и О1А1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными.

Лучи О1А1 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости. (рис. 4)

2 прямые которые не пересекаются и не параллельны скрещиваются

Рисунок 4 – сонаправленные лучи

Теорема.Если стороны двух углов соответственно сонаправленны, то такие углы равны. (рис. 5)

Доказательство:

при доказательстве ограничимся случаем, когда углы лежат в разных плоскостях.

  1. Стороны углов сонаправлены, а, значит, параллельны. Проведем через них плоскости- как показано на чертеже.

Отметим на сторонах угла O произвольные точки A и B.

На соответствующих сторонах угла O1 отложим отрезки OA1 и O₁B₁ равные соответственно ОA и OB.

2. В плоскости рассмотрим четырехугольник OAA1O1.

Так как противолежащие стороны OA и O1A1 этого четырехугольника равны и параллельны по условию, то этот четырехугольник– параллелограмм и, следовательно, равны и параллельны стороны AA1 и OO1.

3. В плоскости, аналогично можно доказать, что OBB1O1 параллелограмм, поэтому равны и параллельны стороны ВВ1 и OO1.

4. Если две отрезка AA1 и BB1 равны параллельны третьему отрезку OO1, значит, они равны и параллельны, т. е. АА1||BB1 и AA1 = BB1.

По определению четырехугольник АВВ1А1 – параллелограмм и из этого получаем АВ=А1В1.

5.Из выше построенного и доказанного АВ=А1В1, ОA =O1A1 и OB =O1B1 следует, что треугольники AOB и A1 O1 B1. равны по трем сторонам, и поэтому О= О1.

2 прямые которые не пересекаются и не параллельны скрещиваются

Рисунок 5 – равные углы с сонаправленными сторонами

🌟 Видео

7. Скрещивающиеся прямыеСкачать

7. Скрещивающиеся прямые

Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Параллельные и скрещивающиеся прямые. СтереометрияСкачать

Параллельные и скрещивающиеся прямые. Стереометрия

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Скрещивающиеся прямыеСкачать

Скрещивающиеся прямые

№41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямойСкачать

№41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямой

Математика 10 Параллельные и скрещивающиеся прямыеСкачать

Математика 10 Параллельные и скрещивающиеся прямые

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Параллельные прямые и почему они не пересекаются да же в космосе!Скачать

Параллельные прямые и почему они не пересекаются да же в космосе!

Перпендикулярные прямые. 6 класс.Скачать

Перпендикулярные прямые. 6 класс.
Поделиться или сохранить к себе:
    1. параллельно
    1. пересекаются
    1. скрещиваются