Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».
Тригонометрические функции связаны с соотношениями сторон в прямоугольном треугольнике:
- Синус угла – отношение противолежащего катета к гипотенузе;
- Косинус угла – отношение прилежащего катета к гипотенузе;
- Тангенс угла – отношение противолежащего катета к прилежащему;
- Котангенс угла – отношение прилежащего катета к противолежащему.
Или в виде формул:
Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).
Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.
Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.
Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.
Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.
Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.
- Значения тригонометрических функций для первой четверти круга (0° – 90°)
- Принцип повтора знаков тригонометрических функций
- Тригонометрический круг
- Углы в радианах
- Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
- Синус, косинус, тангенс и котангенс. Определения
- Угол поворота
- Числа
- Тригонометрические функции углового и числового аргумента
- Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
- Геометрия. Урок 1. Тригонометрия
- Тригонометрия в прямоугольном треугольнике
- Тригонометрия: Тригонометрический круг
- Основное тригонометрическое тождество
- Тригонометрия: Таблица значений тригонометрических функций
- Тригонометрия: градусы и радианы
- Тригонометрия: Формулы приведения
- Тригонометрия: Теорема синусов
- Тригонометрия: Расширенная теорема синусов
- Тригонометрия: Теорема косинусов
- Примеры решений заданий из ОГЭ
- Тригонометрия: Тригонометрические уравнения
- 📸 Видео
Значения тригонометрических функций
для первой четверти круга (0° – 90°)
0° | 30° | 45° | 60° | 90° | sin | 0 | 1 | √3 | – | ctg | – | √3 | 1 | Принцип повтора знаков тригонометрических функцийУгол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону. В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ. Например, значения тригонометрических функций для углов 270° и -90° равны. Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно. Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать Тригонометрический кругУглы в радианахДля математических вычислений тригонометрических функций используются углы не в градусах, а в радианах. Что такое радиан? Угол в радианах равен отношению длины дуги окружности к радиусу. Полный круг в 360° соответствует длине окружности 2 π r. Следовательно 360° в радианах равно 2 π , а 180° равно π радиан. Как преобразовывать градусы в радианы? Нужно значение в градусах разделить на 180° и умножить на π . Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций. Видео:Тригонометрическая окружность. Как выучить?Скачать Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулыТригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии. Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии. Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать Синус, косинус, тангенс и котангенс. ОпределенияИзначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника. Определения тригонометрических функций Синус угла ( sin α ) — отношение противолежащего этому углу катета к гипотенузе. Косинус угла ( cos α ) — отношение прилежащего катета к гипотенузе. Тангенс угла ( t g α ) — отношение противолежащего катета к прилежащему. Котангенс угла ( c t g α ) — отношение прилежащего катета к противолежащему. Данные определения даны для острого угла прямоугольного треугольника! В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB. Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника. Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения. Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать Угол поворотаОпределения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от — ∞ до + ∞ . В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат. Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ). Синус (sin) угла поворота Синус угла поворота α — это ордината точки A 1 ( x , y ). sin α = y Косинус угла поворота α — это абсцисса точки A 1 ( x , y ). cos α = х Тангенс угла поворота α — это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x Котангенс угла поворота α — это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , — 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки. Синус и косинус определены для любых углов α . Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ) При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. Видео:Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctgСкачать ЧислаКак быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота? Синус, косинус, тангенс, котангенс числа Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан. Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад. Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее. Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки. Начальная точка на окружности — точка A c координатами ( 1 , 0 ). Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t . Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t . Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса. Синус (sin) числа t Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t = y Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t = x Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан. Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать Тригонометрические функции углового и числового аргументаКаждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ). Можно сказать, что sin α , cos α , t g α , c t g α — это функции угла альфа, или функции углового аргумента. Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z. Основные функции тригонометрии Синус, косинус, тангенс и котангенс — основные тригонометрические функции. Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать Связь определений sin, cos, tg и ctg из геометрии и тригонометрииВернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это. Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности. В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. sin α = A 1 H O A 1 = y 1 = y Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов. Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса. Видео:Таблица значений тригонометрических функций - как её запомнить!!!Скачать Геометрия. Урок 1. ТригонометрияСмотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно. Видео-уроки на канале Ёжику Понятно. Подпишись! Содержание страницы: Видео:Тригонометрическая окружность tg x и ctg xСкачать Тригонометрия в прямоугольном треугольникеРассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий. Синус угла – отношение противолежащего катета к гипотенузе. sin α = Противолежащий катет гипотенуза Косинус угла – отношение прилежащего катета к гипотенузе. cos α = Прилежащий катет гипотенуза Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу). tg α = Противолежащий катет Прилежащий катет Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу). ctg α = Прилежащий катет Противолежащий катет Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °: sin ∠ A = C B A B cos ∠ A = A C A B tg ∠ A = sin ∠ A cos ∠ A = C B A C ctg ∠ A = cos ∠ A sin ∠ A = A C C B sin ∠ B = A C A B cos ∠ B = B C A B tg ∠ B = sin ∠ B cos ∠ B = A C C B ctg ∠ B = cos ∠ B sin ∠ B = C B A C Видео:Знаки синуса, косинуса, тангенса ЛекцияСкачать Тригонометрия: Тригонометрический кругТригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга. Тригонометрический круг – это окружность единичного радиуса с центром в начале координат. Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 ) На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы. Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A . Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) . Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y . Рассмотрим прямоугольный треугольник A O B : cos α = O B O A = O B 1 = O B sin α = A B O A = A B 1 = A B Поскольку O C A B – прямоугольник, A B = C O . Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат). Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° : Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный . Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y . Координата по оси x – косинус угла , координата по оси y – синус угла . Ещё одно замечание. Синус тупого угла – положительная величина, а косинус – отрицательная. Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный . Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный . Видео:ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать Основное тригонометрическое тождествоsin 2 α + cos 2 α = 1 Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B : A B 2 + O B 2 = O A 2 sin 2 α + cos 2 α = R 2 sin 2 α + cos 2 α = 1 Видео:10 класс, 11 урок, Числовая окружностьСкачать Тригонометрия: Таблица значений тригонометрических функций | 0 ° | 30 ° | 45 ° | 60 ° | 90 ° |
---|---|---|---|---|---|
sin α | 0 | 1 2 | 2 2 | 3 2 | 1 |
cos α | 1 | 3 2 | 2 2 | 1 2 | 0 |
tg α | 0 | 3 3 | 1 | 3 | нет |
ctg α | нет | 3 | 1 | 3 3 | 0 |
Видео:Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Видео:Тригонометрические функции и их знакиСкачать
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β :
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Видео:🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Видео:10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графикиСкачать
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Видео:ЕГЭ математика. Тригонометрические функции на единичной окружности. Находим sin, cos, tg, ctg угловСкачать
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Видео:Синус, косинус произвольного угла. 9 класс.Скачать
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
📸 Видео
Формулы приведения - как их легко выучить!Скачать